Removing some unused code. (#1915)
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
This commit is contained in:
parent
3b5d93e68d
commit
a60fa8406a
|
@ -589,7 +589,7 @@ pub(crate) struct CompletionCompleteChunk {
|
|||
pub system_fingerprint: String,
|
||||
}
|
||||
|
||||
#[derive(Clone, Deserialize, Serialize, ToSchema)]
|
||||
#[derive(Clone, Serialize, ToSchema)]
|
||||
pub(crate) struct ChatCompletionChunk {
|
||||
pub id: String,
|
||||
pub object: String,
|
||||
|
@ -601,7 +601,7 @@ pub(crate) struct ChatCompletionChunk {
|
|||
pub choices: Vec<ChatCompletionChoice>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Deserialize, Serialize, ToSchema)]
|
||||
#[derive(Clone, Serialize, ToSchema)]
|
||||
pub(crate) struct ChatCompletionChoice {
|
||||
pub index: u32,
|
||||
pub delta: ChatCompletionDelta,
|
||||
|
@ -616,7 +616,8 @@ pub struct ToolCallDelta {
|
|||
tool_calls: DeltaToolCall,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
|
||||
#[derive(Clone, Debug, Serialize, ToSchema)]
|
||||
#[serde(untagged)]
|
||||
enum ChatCompletionDelta {
|
||||
Chat(TextMessage),
|
||||
Tool(ToolCallDelta),
|
||||
|
|
|
@ -64,45 +64,6 @@ class SiglipVisionEmbeddings(nn.Module):
|
|||
return embeddings
|
||||
|
||||
|
||||
class SiglipTextEmbeddings(nn.Module):
|
||||
def __init__(self, config: SiglipTextConfig):
|
||||
super().__init__()
|
||||
embed_dim = config.hidden_size
|
||||
|
||||
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
||||
self.position_embedding = nn.Embedding(
|
||||
config.max_position_embeddings, embed_dim
|
||||
)
|
||||
|
||||
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||||
self.register_buffer(
|
||||
"position_ids",
|
||||
torch.arange(config.max_position_embeddings).expand((1, -1)),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
) -> torch.Tensor:
|
||||
seq_length = (
|
||||
input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
||||
)
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = self.position_ids[:, :seq_length]
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.token_embedding(input_ids)
|
||||
|
||||
position_embeddings = self.position_embedding(position_ids)
|
||||
embeddings = inputs_embeds + position_embeddings
|
||||
|
||||
return embeddings
|
||||
|
||||
|
||||
class SiglipAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
|
@ -147,7 +108,6 @@ class SiglipAttention(nn.Module):
|
|||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
|
@ -243,32 +203,18 @@ class SiglipEncoderLayer(nn.Module):
|
|||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: torch.Tensor,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.FloatTensor]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`):
|
||||
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
||||
attention_mask (`torch.FloatTensor`):
|
||||
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
||||
output_attentions (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
"""
|
||||
residual = hidden_states
|
||||
hidden_states = self.layer_norm1(hidden_states)
|
||||
hidden_states, attn_weights = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
residual = hidden_states
|
||||
hidden_states = self.layer_norm2(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
if output_attentions:
|
||||
return hidden_states, attn_weights
|
||||
return hidden_states, None
|
||||
|
||||
|
||||
|
@ -406,58 +352,6 @@ def default_flax_embed_init(tensor):
|
|||
from transformers import PreTrainedModel
|
||||
|
||||
|
||||
class SiglipPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = SiglipConfig
|
||||
base_model_prefix = "siglip"
|
||||
supports_gradient_checkpointing = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
if isinstance(module, SiglipVisionEmbeddings):
|
||||
width = (
|
||||
self.config.vision_config.hidden_size
|
||||
if isinstance(self.config, SiglipConfig)
|
||||
else self.config.hidden_size
|
||||
)
|
||||
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
||||
elif isinstance(module, nn.Embedding):
|
||||
default_flax_embed_init(module.weight)
|
||||
elif isinstance(module, SiglipAttention):
|
||||
nn.init.xavier_uniform_(module.q_proj.weight)
|
||||
nn.init.xavier_uniform_(module.k_proj.weight)
|
||||
nn.init.xavier_uniform_(module.v_proj.weight)
|
||||
nn.init.xavier_uniform_(module.out_proj.weight)
|
||||
nn.init.zeros_(module.q_proj.bias)
|
||||
nn.init.zeros_(module.k_proj.bias)
|
||||
nn.init.zeros_(module.v_proj.bias)
|
||||
nn.init.zeros_(module.out_proj.bias)
|
||||
elif isinstance(module, SiglipMLP):
|
||||
nn.init.xavier_uniform_(module.fc1.weight)
|
||||
nn.init.xavier_uniform_(module.fc2.weight)
|
||||
nn.init.normal_(module.fc1.bias, std=1e-6)
|
||||
nn.init.normal_(module.fc2.bias, std=1e-6)
|
||||
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
|
||||
nn.init.xavier_uniform_(module.probe.data)
|
||||
nn.init.xavier_uniform_(module.attention.in_proj_weight.data)
|
||||
nn.init.zeros_(module.attention.in_proj_bias.data)
|
||||
elif isinstance(module, SiglipModel):
|
||||
logit_scale_init = torch.log(torch.tensor(1.0))
|
||||
module.logit_scale.data.fill_(logit_scale_init)
|
||||
module.logit_bias.data.zero_()
|
||||
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
||||
lecun_normal_(module.weight)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
class SiglipEncoder(nn.Module):
|
||||
"""
|
||||
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
||||
|
@ -483,36 +377,13 @@ class SiglipEncoder(nn.Module):
|
|||
self,
|
||||
inputs_embeds,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[torch.Tensor] = None,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
"""
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
hidden_states, _ = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
return hidden_states
|
||||
|
|
Loading…
Reference in New Issue