chore: prepare 2.4.0 release (#2695)
This commit is contained in:
parent
6f88bd9390
commit
a6b02da971
File diff suppressed because it is too large
Load Diff
|
@ -20,7 +20,7 @@ default-members = [
|
|||
resolver = "2"
|
||||
|
||||
[workspace.package]
|
||||
version = "2.3.2-dev0"
|
||||
version = "2.4.1-dev0"
|
||||
edition = "2021"
|
||||
authors = ["Olivier Dehaene"]
|
||||
homepage = "https://github.com/huggingface/text-generation-inference"
|
||||
|
|
|
@ -83,7 +83,7 @@ model=HuggingFaceH4/zephyr-7b-beta
|
|||
volume=$PWD/data
|
||||
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model
|
||||
ghcr.io/huggingface/text-generation-inference:2.4.0 --model-id $model
|
||||
```
|
||||
|
||||
And then you can make requests like
|
||||
|
@ -120,7 +120,7 @@ curl localhost:8080/v1/chat/completions \
|
|||
|
||||
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
|
||||
|
||||
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1-rocm --model-id $model` instead of the command above.
|
||||
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.4.0-rocm --model-id $model` instead of the command above.
|
||||
|
||||
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
|
||||
```
|
||||
|
@ -150,7 +150,7 @@ model=meta-llama/Meta-Llama-3.1-8B-Instruct
|
|||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
token=<your cli READ token>
|
||||
|
||||
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model
|
||||
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.4.0 --model-id $model
|
||||
```
|
||||
|
||||
### A note on Shared Memory (shm)
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
"name": "Apache 2.0",
|
||||
"url": "https://www.apache.org/licenses/LICENSE-2.0"
|
||||
},
|
||||
"version": "2.3.2-dev0"
|
||||
"version": "2.4.1-dev0"
|
||||
},
|
||||
"paths": {
|
||||
"/": {
|
||||
|
|
|
@ -19,6 +19,6 @@ docker run --gpus all \
|
|||
--shm-size 1g \
|
||||
-e HF_TOKEN=$token \
|
||||
-p 8080:80 \
|
||||
-v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
-v $volume:/data ghcr.io/huggingface/text-generation-inference:2.4.0 \
|
||||
--model-id $model
|
||||
```
|
||||
|
|
|
@ -19,7 +19,7 @@ bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models.
|
|||
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇
|
||||
|
||||
```bash
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model --quantize bitsandbytes
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.4.0 --model-id $model --quantize bitsandbytes
|
||||
```
|
||||
|
||||
4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.
|
||||
|
@ -27,7 +27,7 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingf
|
|||
In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇
|
||||
|
||||
```bash
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model --quantize bitsandbytes-nf4
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.4.0 --model-id $model --quantize bitsandbytes-nf4
|
||||
```
|
||||
|
||||
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
|
||||
|
@ -48,7 +48,7 @@ $$({\hat{W}_{l}}^{*} = argmin_{\hat{W_{l}}} ||W_{l}X-\hat{W}_{l}X||^{2}_{2})$$
|
|||
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇
|
||||
|
||||
```bash
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model --quantize gptq
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.4.0 --model-id $model --quantize gptq
|
||||
```
|
||||
|
||||
Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.
|
||||
|
|
|
@ -11,7 +11,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
|
|||
docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
|
||||
--device=/dev/kfd --device=/dev/dri --group-add video \
|
||||
--ipc=host --shm-size 256g --net host -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1-rocm \
|
||||
ghcr.io/huggingface/text-generation-inference:2.4.0-rocm \
|
||||
--model-id $model
|
||||
```
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
|
|||
docker run --rm --privileged --cap-add=sys_nice \
|
||||
--device=/dev/dri \
|
||||
--ipc=host --shm-size 1g --net host -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1-intel-xpu \
|
||||
ghcr.io/huggingface/text-generation-inference:2.4.0-intel-xpu \
|
||||
--model-id $model --cuda-graphs 0
|
||||
```
|
||||
|
||||
|
@ -29,7 +29,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
|
|||
docker run --rm --privileged --cap-add=sys_nice \
|
||||
--device=/dev/dri \
|
||||
--ipc=host --shm-size 1g --net host -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1-intel-cpu \
|
||||
ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu \
|
||||
--model-id $model --cuda-graphs 0
|
||||
```
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
|
|||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
|
||||
docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
ghcr.io/huggingface/text-generation-inference:2.4.0 \
|
||||
--model-id $model
|
||||
```
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
|
|||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
ghcr.io/huggingface/text-generation-inference:2.4.0 \
|
||||
--model-id $model
|
||||
```
|
||||
|
||||
|
@ -96,7 +96,7 @@ curl 127.0.0.1:8080/generate \
|
|||
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.
|
||||
|
||||
```bash
|
||||
docker run ghcr.io/huggingface/text-generation-inference:2.3.1 --help
|
||||
docker run ghcr.io/huggingface/text-generation-inference:2.4.0 --help
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
|
|
@ -163,7 +163,7 @@ hub = {
|
|||
|
||||
# create Hugging Face Model Class
|
||||
huggingface_model = HuggingFaceModel(
|
||||
image_uri=get_huggingface_llm_image_uri("huggingface",version="2.3.2"),
|
||||
image_uri=get_huggingface_llm_image_uri("huggingface",version="2.4.0"),
|
||||
env=hub,
|
||||
role=role,
|
||||
)
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
"id": "",
|
||||
"model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
|
||||
"object": "chat.completion",
|
||||
"system_fingerprint": "2.3.1-dev0-native",
|
||||
"system_fingerprint": "2.4.1-dev0-native",
|
||||
"usage": {
|
||||
"completion_tokens": 10,
|
||||
"prompt_tokens": 50,
|
||||
|
@ -44,7 +44,7 @@
|
|||
"id": "",
|
||||
"model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
|
||||
"object": "chat.completion",
|
||||
"system_fingerprint": "2.3.1-dev0-native",
|
||||
"system_fingerprint": "2.4.1-dev0-native",
|
||||
"usage": {
|
||||
"completion_tokens": 10,
|
||||
"prompt_tokens": 50,
|
||||
|
@ -70,7 +70,7 @@
|
|||
"id": "",
|
||||
"model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
|
||||
"object": "chat.completion",
|
||||
"system_fingerprint": "2.3.1-dev0-native",
|
||||
"system_fingerprint": "2.4.1-dev0-native",
|
||||
"usage": {
|
||||
"completion_tokens": 10,
|
||||
"prompt_tokens": 50,
|
||||
|
@ -96,7 +96,7 @@
|
|||
"id": "",
|
||||
"model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
|
||||
"object": "chat.completion",
|
||||
"system_fingerprint": "2.3.1-dev0-native",
|
||||
"system_fingerprint": "2.4.1-dev0-native",
|
||||
"usage": {
|
||||
"completion_tokens": 10,
|
||||
"prompt_tokens": 50,
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
"id": "",
|
||||
"model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
|
||||
"object": "chat.completion",
|
||||
"system_fingerprint": "2.3.1-dev0-native",
|
||||
"system_fingerprint": "2.4.1-dev0-native",
|
||||
"usage": {
|
||||
"completion_tokens": 10,
|
||||
"prompt_tokens": 50,
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
"id": "",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"object": "chat.completion",
|
||||
"system_fingerprint": "2.3.2-dev0-native",
|
||||
"system_fingerprint": "2.4.1-dev0-native",
|
||||
"usage": {
|
||||
"completion_tokens": 23,
|
||||
"prompt_tokens": 604,
|
||||
|
|
|
@ -15,6 +15,6 @@
|
|||
"id": "",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"object": "chat.completion.chunk",
|
||||
"system_fingerprint": "2.3.2-dev0-native",
|
||||
"system_fingerprint": "2.4.1-dev0-native",
|
||||
"usage": null
|
||||
}
|
||||
|
|
|
@ -15,6 +15,6 @@
|
|||
"id": "",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"object": "chat.completion.chunk",
|
||||
"system_fingerprint": "2.3.2-dev0-native",
|
||||
"system_fingerprint": "2.4.1-dev0-native",
|
||||
"usage": null
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue