Add sealion mpt support (#1477)

# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->

---------

Co-authored-by: Choon Meng Tan <choonmeng@aisingapore.org>
Co-authored-by: David Ong Tat-Wee <13075447+ongtw@users.noreply.github.com>
This commit is contained in:
Nicolas Patry 2024-01-26 14:05:02 +01:00 committed by GitHub
parent b95732180d
commit ac49972752
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 63 additions and 18 deletions

View File

@ -28,7 +28,6 @@ EPS = 1e-5
def load_col(config, prefix, weights, bias): def load_col(config, prefix, weights, bias):
assert bias == False, NotImplementedError
assert config.quantize != "gptq", NotImplementedError assert config.quantize != "gptq", NotImplementedError
slice_ = weights._get_slice(f"{prefix}.weight") slice_ = weights._get_slice(f"{prefix}.weight")
rank = weights.process_group.rank() rank = weights.process_group.rank()
@ -45,7 +44,26 @@ def load_col(config, prefix, weights, bias):
if weight.dtype != torch.int32: if weight.dtype != torch.int32:
weight = weight.to(dtype=weights.dtype) weight = weight.to(dtype=weights.dtype)
weight = weight.to(device=weights.device) weight = weight.to(device=weights.device)
bias = None
if bias:
bias_slice_ = weights._get_slice(f"{prefix}.bias")
bias_rank = weights.process_group.rank()
bias_size = weights.process_group.size()
bias_h = bias_slice_.get_shape()
bias_h = bias_h[0]
bias_block_size = bias_h // bias_size
bias_q_part = bias_slice_[bias_rank * bias_block_size : (bias_rank + 1) * bias_block_size]
bias_k_part = bias_slice_[bias_h + bias_rank * bias_block_size : bias_h + (bias_rank + 1) * bias_block_size]
bias_v_part = bias_slice_[2 * bias_h + bias_rank * bias_block_size : 2 * bias_h + (bias_rank + 1) * bias_block_size]
bias = torch.cat([bias_q_part, bias_k_part, bias_v_part], dim=0)
if bias.dtype != torch.int32:
bias = bias.to(dtype=weights.dtype)
bias = bias.to(device=weights.device)
else:
bias = None
linear = get_linear(weight, bias, config.quantize) linear = get_linear(weight, bias, config.quantize)
return TensorParallelColumnLinear(linear) return TensorParallelColumnLinear(linear)
@ -330,7 +348,12 @@ class MultiheadAttention(nn.Module):
config, prefix=f"{prefix}.Wqkv", weights=weights, bias=not config.no_bias config, prefix=f"{prefix}.Wqkv", weights=weights, bias=not config.no_bias
) )
if self.qk_ln: if self.qk_ln:
raise NotImplementedError("qk_ln is not supported") bias = not config.no_bias
hidden_size = config.d_model
head_dim = hidden_size // self.n_heads
self.q_ln = LPLayerNorm(d_model, bias=bias, prefix=f"{prefix}.q_ln", weights=weights)
self.k_ln = LPLayerNorm(self.n_heads * head_dim, prefix=f"{prefix}.k_ln", weights=weights)
if self.attn_impl == "flash": if self.attn_impl == "flash":
self.attn_fn = flash_attn_fn self.attn_fn = flash_attn_fn
elif self.attn_impl == "triton": elif self.attn_impl == "triton":
@ -581,12 +604,20 @@ class MPTBlock(nn.Module):
f"""Not implemented attn {config.attn_config["attn_type"]}""" f"""Not implemented attn {config.attn_config["attn_type"]}"""
) )
resid_pdrop = config.resid_pdrop resid_pdrop = config.resid_pdrop
self.norm_1 = nn.LayerNorm.load_no_bias( if config.no_bias:
prefix=f"{prefix}.norm_1", weights=weights, eps=EPS self.norm_1 = nn.LayerNorm.load_no_bias(
) prefix=f"{prefix}.norm_1", weights=weights, eps=EPS
self.norm_2 = nn.LayerNorm.load_no_bias( )
prefix=f"{prefix}.norm_2", weights=weights, eps=EPS self.norm_2 = nn.LayerNorm.load_no_bias(
) prefix=f"{prefix}.norm_2", weights=weights, eps=EPS
)
else:
self.norm_1 = nn.LayerNorm.load(
prefix=f"{prefix}.norm_1", weights=weights, eps=EPS
)
self.norm_2 = nn.LayerNorm.load(
prefix=f"{prefix}.norm_2", weights=weights, eps=EPS
)
self.attn = MultiheadAttention(config, prefix=f"{prefix}.attn", weights=weights) self.attn = MultiheadAttention(config, prefix=f"{prefix}.attn", weights=weights)
self.ffn = MPTMLP(config, prefix=f"{prefix}.ffn", weights=weights) self.ffn = MPTMLP(config, prefix=f"{prefix}.ffn", weights=weights)
self.resid_attn_dropout = nn.Dropout(resid_pdrop) self.resid_attn_dropout = nn.Dropout(resid_pdrop)
@ -635,6 +666,9 @@ class LPLayerNorm(torch.nn.LayerNorm):
elementwise_affine=True, elementwise_affine=True,
device=None, device=None,
dtype=None, dtype=None,
bias: Optional[bool] = True,
prefix=None,
weights=None,
): ):
super().__init__( super().__init__(
normalized_shape=normalized_shape, normalized_shape=normalized_shape,
@ -642,7 +676,14 @@ class LPLayerNorm(torch.nn.LayerNorm):
elementwise_affine=elementwise_affine, elementwise_affine=elementwise_affine,
device=device, device=device,
dtype=dtype, dtype=dtype,
bias=bias,
) )
if weights is not None:
self.weight = nn.Parameter(weights.get_sharded(f"{prefix}.weight", dim=0))
if bias:
self.bias = nn.Parameter(weights.get_sharded(f"{prefix}.bias", dim=0))
self.normalized_shape = self.weight.shape
def forward(self, x): def forward(self, x):
module_device = x.device module_device = x.device
@ -755,20 +796,23 @@ class MPTModel(MPTPreTrainedModel):
) )
self.wte = TensorParallelEmbedding("transformer.wte", weights) self.wte = TensorParallelEmbedding("transformer.wte", weights)
if not self.alibi: if not self.alibi:
# self.wpe = torch.nn.Embedding( self.wpe = TensorParallelEmbedding("transformer.wpe", weights)
# config.max_seq_len, config.d_model, device=config.init_device
# )
raise RuntimeError("no alibi no supported")
self.blocks = nn.ModuleList( self.blocks = nn.ModuleList(
[ [
MPTBlock(config, prefix=f"transformer.blocks.{i}", weights=weights) MPTBlock(config, prefix=f"transformer.blocks.{i}", weights=weights)
for i in range(config.n_layers) for i in range(config.n_layers)
] ]
) )
self.norm_f = nn.LayerNorm.load_no_bias( if config.no_bias:
prefix="transformer.norm_f", weights=weights, eps=EPS self.norm_f = nn.LayerNorm.load_no_bias(
) prefix="transformer.norm_f", weights=weights, eps=EPS
)
else:
self.norm_f = nn.LayerNorm.load(
prefix="transformer.norm_f", weights=weights, eps=EPS
)
self.is_causal = not self.prefix_lm self.is_causal = not self.prefix_lm
self._attn_bias_initialized = False self._attn_bias_initialized = False
self.attn_bias = None self.attn_bias = None
@ -787,8 +831,9 @@ class MPTModel(MPTPreTrainedModel):
if config.verbose: if config.verbose:
warnings.warn(f"Removing bias ({module.bias}) from {module}.") warnings.warn(f"Removing bias ({module.bias}) from {module}.")
module.register_parameter("bias", None) module.register_parameter("bias", None)
if config.verbose and config.verbose > 2: if hasattr(self.config, "verbose"):
print(self) if config.verbose and config.verbose > 2:
print(self)
if "verbose" not in self.config.init_config: if "verbose" not in self.config.init_config:
self.config.init_config["verbose"] = self.config.verbose self.config.init_config["verbose"] = self.config.verbose
if self.config.init_config["verbose"] > 1: if self.config.init_config["verbose"] > 1: