feat(server): optim flash causal lm decode_token (#285)
This commit is contained in:
parent
bc5c07231e
commit
ad66f6ef9a
|
@ -554,6 +554,7 @@ class FlashLlamaModel(torch.nn.Module):
|
|||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
cu_seqlens_q,
|
||||
max_s,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
|
@ -575,15 +576,11 @@ class FlashLlamaModel(torch.nn.Module):
|
|||
)
|
||||
)
|
||||
layer_past_present_indices = None
|
||||
cu_seqlens_q = None
|
||||
slice_past_index = len(hidden_states)
|
||||
# Decode
|
||||
else:
|
||||
# Create indices from cumulative sequence lengths
|
||||
layer_past_present_indices = cu_seqlens[1:] - 1
|
||||
cu_seqlens_q = torch.arange(
|
||||
cu_seqlens.shape[0], dtype=torch.int32, device=hidden_states.device
|
||||
)
|
||||
slice_past_index = None
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
|
@ -650,6 +647,7 @@ class FlashLlamaForCausalLM(torch.nn.Module):
|
|||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
cu_seqlens_q,
|
||||
max_s,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
|
@ -658,6 +656,7 @@ class FlashLlamaForCausalLM(torch.nn.Module):
|
|||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
cu_seqlens_q,
|
||||
max_s,
|
||||
past_key_values,
|
||||
pre_allocate_past_size,
|
||||
|
|
|
@ -617,6 +617,7 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
|
|||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
cu_seqlens_q,
|
||||
max_s,
|
||||
past_key_values=None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
|
@ -638,15 +639,11 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
|
|||
)
|
||||
)
|
||||
layer_past_present_indices = None
|
||||
cu_seqlens_q = None
|
||||
slice_past_index = len(hidden_states)
|
||||
# Decode
|
||||
else:
|
||||
# Create indices from cumulative sequence lengths
|
||||
layer_past_present_indices = cu_seqlens[1:] - 1
|
||||
cu_seqlens_q = torch.arange(
|
||||
cu_seqlens.shape[0], dtype=torch.int32, device=hidden_states.device
|
||||
)
|
||||
slice_past_index = None
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
|
@ -726,6 +723,7 @@ class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel):
|
|||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
cu_seqlens_q,
|
||||
max_s,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
|
@ -734,6 +732,7 @@ class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel):
|
|||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
cu_seqlens_q,
|
||||
max_s,
|
||||
past_key_values,
|
||||
pre_allocate_past_size,
|
||||
|
|
|
@ -484,6 +484,7 @@ class FlashSantacoderModel(nn.Module):
|
|||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
cu_seqlens_q,
|
||||
max_s,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
|
@ -507,15 +508,11 @@ class FlashSantacoderModel(nn.Module):
|
|||
)
|
||||
)
|
||||
layer_past_present_indices = None
|
||||
cu_seqlens_q = None
|
||||
slice_past_index = len(hidden_states)
|
||||
# Decode
|
||||
else:
|
||||
# Create indices from cumulative sequence lengths
|
||||
layer_past_present_indices = cu_seqlens[1:] - 1
|
||||
cu_seqlens_q = torch.arange(
|
||||
cu_seqlens.shape[0], dtype=torch.int32, device=hidden_states.device
|
||||
)
|
||||
slice_past_index = None
|
||||
|
||||
residual = None
|
||||
|
@ -566,6 +563,7 @@ class FlashSantacoderForCausalLM(nn.Module):
|
|||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
cu_seqlens_q,
|
||||
max_s,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
|
@ -574,6 +572,7 @@ class FlashSantacoderForCausalLM(nn.Module):
|
|||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
cu_seqlens_q,
|
||||
max_s,
|
||||
past_key_values,
|
||||
pre_allocate_past_size,
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
import numpy as np
|
||||
|
||||
from torch.nn import functional as F
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
@ -33,12 +35,16 @@ class FlashCausalLMBatch(Batch):
|
|||
requests_idx_mapping: Dict[int, int]
|
||||
|
||||
# Decoder values
|
||||
input_ids: List[torch.Tensor]
|
||||
position_ids: List[torch.Tensor]
|
||||
input_ids: torch.Tensor
|
||||
position_ids: torch.Tensor
|
||||
|
||||
# cumulative sequence lengths
|
||||
cu_seqlens: List[int]
|
||||
cu_seqlens: torch.Tensor
|
||||
# cumulative query sequence lengths, only used in decode
|
||||
cu_seqlens_q: Optional[torch.Tensor]
|
||||
# past key values, only used in decode
|
||||
past_key_values: Optional[torch.Tensor]
|
||||
max_seqlen: int
|
||||
past_key_values: Optional[Union[torch.Tensor, List[torch.Tensor]]]
|
||||
|
||||
# All tokens
|
||||
all_input_ids: List[List[int]]
|
||||
|
@ -53,9 +59,6 @@ class FlashCausalLMBatch(Batch):
|
|||
next_token_choosers: List[NextTokenChooser]
|
||||
stopping_criterias: List[StoppingCriteria]
|
||||
|
||||
# Constant shared tensor, ref here just so that it's accessible in concatentate()
|
||||
past_pad: Optional[torch.Tensor]
|
||||
|
||||
# Maximum number of tokens this batch will grow to
|
||||
max_tokens: int
|
||||
|
||||
|
@ -74,7 +77,6 @@ class FlashCausalLMBatch(Batch):
|
|||
tokenizer: PreTrainedTokenizerBase,
|
||||
device: torch.device,
|
||||
) -> "FlashCausalLMBatch":
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [0]
|
||||
max_seqlen = 0
|
||||
|
@ -83,7 +85,6 @@ class FlashCausalLMBatch(Batch):
|
|||
offsets = []
|
||||
token_offsets = []
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
requests_idx_mapping = {}
|
||||
|
||||
next_token_choosers = []
|
||||
|
@ -109,15 +110,11 @@ class FlashCausalLMBatch(Batch):
|
|||
|
||||
offsets.append(None)
|
||||
token_offsets.append(None)
|
||||
|
||||
all_input_ids.append(tokenized_input)
|
||||
|
||||
tokenized_input = torch.tensor(tokenized_input, device=device)
|
||||
input_ids.append(tokenized_input)
|
||||
|
||||
# Position ids
|
||||
position_ids.append(
|
||||
torch.arange(0, input_length, dtype=torch.int32, device=device)
|
||||
)
|
||||
position_ids.append(np.arange(0, input_length))
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.append(cumulative_length + input_length)
|
||||
|
@ -130,14 +127,19 @@ class FlashCausalLMBatch(Batch):
|
|||
max_new_tokens = stopping_criteria.max_new_tokens
|
||||
stopping_criterias.append(stopping_criteria)
|
||||
|
||||
all_input_ids_tensor.append(
|
||||
F.pad(tokenized_input, (0, stopping_criteria.max_new_tokens))
|
||||
)
|
||||
|
||||
# Update
|
||||
cumulative_length += input_length
|
||||
max_tokens += input_length + max_new_tokens
|
||||
|
||||
# Create tensors on device
|
||||
input_ids = torch.tensor(
|
||||
np.concatenate(all_input_ids), dtype=torch.int64, device=device
|
||||
)
|
||||
position_ids = torch.tensor(
|
||||
np.concatenate(position_ids), dtype=torch.int32, device=device
|
||||
)
|
||||
cu_seqlens = torch.tensor(cu_seqlens, device=device, dtype=torch.int32)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
|
@ -145,16 +147,16 @@ class FlashCausalLMBatch(Batch):
|
|||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
cu_seqlens_q=None,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=None,
|
||||
input_lengths=input_lengths,
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
all_input_ids_tensor=[],
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
past_pad=None,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
|
||||
|
@ -174,9 +176,13 @@ class FlashCausalLMBatch(Batch):
|
|||
# New values after filtering
|
||||
requests_idx_mapping = {}
|
||||
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [0]
|
||||
input_ids = self.input_ids.new_empty(len(requests))
|
||||
position_ids = self.position_ids.new_empty(len(requests))
|
||||
# Create on CPU to only move to GPU once instead of at every copy
|
||||
cu_seqlens = torch.zeros(len(requests) + 1, dtype=torch.int32)
|
||||
cu_seqlens_q = torch.arange(
|
||||
0, len(requests) + 1, device=self.cu_seqlens_q.device, dtype=torch.int32
|
||||
)
|
||||
max_seqlen = 0
|
||||
past_key_values = []
|
||||
|
||||
|
@ -199,16 +205,18 @@ class FlashCausalLMBatch(Batch):
|
|||
# Get length
|
||||
request_input_length = self.input_lengths[idx]
|
||||
|
||||
input_ids.append(self.input_ids[idx])
|
||||
position_ids.append(self.position_ids[idx])
|
||||
cu_seqlens.append(cumulative_length + request_input_length)
|
||||
max_seqlen = max(max_seqlen, request_input_length)
|
||||
# True index for past
|
||||
past_key_values.append(self.past_key_values[2 * idx])
|
||||
# Copy tensors (GPU)
|
||||
input_ids[i] = self.input_ids[idx]
|
||||
position_ids[i] = self.position_ids[idx]
|
||||
|
||||
if not single_request:
|
||||
# Add one padding
|
||||
past_key_values.append(self.past_pad)
|
||||
# Copy to tensor (CPU)
|
||||
cu_seqlens[i + 1] = cumulative_length + request_input_length
|
||||
max_seqlen = max(max_seqlen, request_input_length)
|
||||
|
||||
# Slice from past
|
||||
past_key_values.append(
|
||||
self.past_key_values[:, self.cu_seqlens[idx] : self.cu_seqlens[idx + 1]]
|
||||
)
|
||||
|
||||
all_input_ids.append(self.all_input_ids[idx])
|
||||
all_input_ids_tensor.append(self.all_input_ids_tensor[idx])
|
||||
|
@ -229,7 +237,7 @@ class FlashCausalLMBatch(Batch):
|
|||
|
||||
if single_request:
|
||||
# Preallocate tensor for bs = 1 case
|
||||
past_key_values = torch.nn.functional.pad(
|
||||
past_key_values = F.pad(
|
||||
past_key_values[0],
|
||||
(
|
||||
0,
|
||||
|
@ -243,15 +251,21 @@ class FlashCausalLMBatch(Batch):
|
|||
- stopping_criterias[0].current_tokens,
|
||||
),
|
||||
)
|
||||
else:
|
||||
# Cat all past
|
||||
past_key_values = torch.cat(past_key_values, dim=1)
|
||||
|
||||
# Move to GPU now that we have the whole tensor
|
||||
cu_seqlens = cu_seqlens.to(self.cu_seqlens.device)
|
||||
|
||||
return FlashCausalLMBatch(
|
||||
batch_id=self.batch_id,
|
||||
past_pad=self.past_pad,
|
||||
requests=requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
cu_seqlens_q=cu_seqlens_q,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
|
@ -271,9 +285,16 @@ class FlashCausalLMBatch(Batch):
|
|||
requests = []
|
||||
requests_idx_mapping = {}
|
||||
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
total_batch_size = sum([len(b) for b in batches])
|
||||
|
||||
device = batches[0].input_ids.device
|
||||
|
||||
input_ids = batches[0].input_ids.new_empty(total_batch_size)
|
||||
position_ids = batches[0].position_ids.new_empty(total_batch_size)
|
||||
cu_seqlens = [0]
|
||||
cu_seqlens_q = torch.arange(
|
||||
0, total_batch_size + 1, device=device, dtype=torch.int32
|
||||
)
|
||||
max_seqlen = 0
|
||||
past_key_values = []
|
||||
|
||||
|
@ -302,22 +323,25 @@ class FlashCausalLMBatch(Batch):
|
|||
for k, v in batch.requests_idx_mapping.items():
|
||||
requests_idx_mapping[k] = v + cumulative_batch_size
|
||||
|
||||
input_ids.extend(batch.input_ids)
|
||||
position_ids.extend(batch.position_ids)
|
||||
start_index = cumulative_batch_size
|
||||
end_index = cumulative_batch_size + len(batch)
|
||||
|
||||
# Copy tensors (GPU)
|
||||
input_ids[start_index:end_index] = batch.input_ids
|
||||
position_ids[start_index:end_index] = batch.position_ids
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.extend([l + cumulative_length for l in batch.cu_seqlens[1:]])
|
||||
max_seqlen = max(max_seqlen, batch.max_seqlen)
|
||||
|
||||
if len(batch) != 1:
|
||||
past_key_values.extend(batch.past_key_values)
|
||||
past_key_values.append(batch.past_key_values)
|
||||
else:
|
||||
# past was pre-allocated for this batch
|
||||
# We need to slice to remove the padding
|
||||
past_key_values.append(
|
||||
batch.past_key_values[:, : batch.input_lengths[0]]
|
||||
)
|
||||
# Add one padding
|
||||
past_key_values.append(batch.past_pad)
|
||||
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
all_input_ids_tensor.extend(batch.all_input_ids_tensor)
|
||||
|
@ -334,14 +358,19 @@ class FlashCausalLMBatch(Batch):
|
|||
cumulative_batch_size += len(batch)
|
||||
max_tokens += batch.max_tokens
|
||||
|
||||
# Cat past
|
||||
past_key_values = torch.cat(past_key_values, dim=1)
|
||||
# Create final tensor on GPU
|
||||
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32, device=device)
|
||||
|
||||
return FlashCausalLMBatch(
|
||||
batch_id=batches[0].batch_id,
|
||||
past_pad=batches[0].past_pad,
|
||||
requests=requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
cu_seqlens_q=cu_seqlens_q,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
|
@ -367,10 +396,9 @@ class FlashCausalLM(Model):
|
|||
quantize: bool = False,
|
||||
decode_buffer: int = 3,
|
||||
):
|
||||
self.past_pad = None
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
dtype = torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashCausalLM is only available on GPU")
|
||||
|
||||
|
@ -410,6 +438,7 @@ class FlashCausalLM(Model):
|
|||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
cu_seqlens_q: Optional[torch.Tensor],
|
||||
max_s: int,
|
||||
past_key_values: Optional = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
|
@ -419,6 +448,7 @@ class FlashCausalLM(Model):
|
|||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
cu_seqlens_q=cu_seqlens_q,
|
||||
max_s=max_s,
|
||||
past_key_values=past_key_values,
|
||||
pre_allocate_past_size=pre_allocate_past_size,
|
||||
|
@ -428,22 +458,9 @@ class FlashCausalLM(Model):
|
|||
def generate_token(
|
||||
self, batch: FlashCausalLMBatch
|
||||
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
|
||||
# Shortcut when batch_size == 1
|
||||
if len(batch) == 1:
|
||||
input_ids = batch.input_ids[0].view(-1)
|
||||
# No need to slice as flash attention will take care of it with cu_seqlens
|
||||
past_key_values = batch.past_key_values
|
||||
else:
|
||||
# Concatenate tensors
|
||||
input_ids = torch.cat(batch.input_ids).view(-1)
|
||||
past_key_values = (
|
||||
torch.cat(batch.past_key_values, dim=1)
|
||||
if batch.past_key_values is not None
|
||||
else None
|
||||
)
|
||||
prefill = batch.past_key_values is None
|
||||
|
||||
# if prefill and bs == 1
|
||||
if past_key_values is None and len(batch) == 1:
|
||||
if prefill and len(batch) == 1:
|
||||
# Ask to pre-allocate kv to its max size
|
||||
# == number of tokens + max_new_tokens
|
||||
pre_allocate_past_size = (
|
||||
|
@ -452,42 +469,74 @@ class FlashCausalLM(Model):
|
|||
else:
|
||||
pre_allocate_past_size = None
|
||||
|
||||
# Concatenate when prefill, torch.tensor when decode
|
||||
position_ids = (
|
||||
torch.tensor(batch.position_ids, device=self.device)
|
||||
if batch.past_key_values is not None
|
||||
else torch.cat(batch.position_ids)
|
||||
)
|
||||
cu_seqlens = torch.tensor(
|
||||
batch.cu_seqlens, device=self.device, dtype=torch.int32
|
||||
)
|
||||
|
||||
out, present = self.forward(
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
batch.input_ids,
|
||||
batch.position_ids,
|
||||
batch.cu_seqlens,
|
||||
batch.cu_seqlens_q,
|
||||
batch.max_seqlen,
|
||||
past_key_values,
|
||||
batch.past_key_values,
|
||||
pre_allocate_past_size,
|
||||
)
|
||||
|
||||
# Initialize past_key_values in prefill
|
||||
if batch.past_key_values is None:
|
||||
# Initialize past padding tensor
|
||||
if self.past_pad is None:
|
||||
self.past_pad = present.new_zeros(
|
||||
present.shape[0], 1, *present.shape[2:]
|
||||
if prefill:
|
||||
if len(batch) > 1:
|
||||
# We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
|
||||
# When batch == 1, we will just use the batch.input_ids values directly
|
||||
prefill_tokens_indices = batch.input_ids.new_zeros(len(batch.input_ids))
|
||||
|
||||
# Create batch.cu_seqlens_q for decode
|
||||
batch.cu_seqlens_q = torch.arange(
|
||||
0, len(batch) + 1, device=self.device, dtype=torch.int32
|
||||
)
|
||||
next_input_ids = batch.input_ids.new_empty(len(batch))
|
||||
next_position_ids = batch.position_ids.new_empty(len(batch))
|
||||
else:
|
||||
prefill_logprobs = None
|
||||
next_input_ids = batch.input_ids
|
||||
next_position_ids = batch.position_ids
|
||||
|
||||
next_token_logprobs = out.new_empty(len(batch))
|
||||
|
||||
# Prepare past for next decode
|
||||
if len(batch) > 1:
|
||||
# Used to slice next batch past
|
||||
past_indices = torch.empty(
|
||||
present.shape[1], dtype=torch.int64, device=self.device
|
||||
)
|
||||
batch.past_key_values = present.new_empty(
|
||||
(
|
||||
present.shape[0],
|
||||
present.shape[1] + len(batch.requests),
|
||||
*present.shape[2:],
|
||||
)
|
||||
# Set in batch in case it needs to be used later in concatenate()
|
||||
batch.past_pad = self.past_pad
|
||||
if len(batch) == 1:
|
||||
# present is already pre-padded
|
||||
batch.past_key_values = present
|
||||
else:
|
||||
# Add padding after each sequence
|
||||
# This will have the correct shape after the final past_key_values concatenation before the model
|
||||
# forward
|
||||
batch.past_key_values = [None, self.past_pad] * len(batch)
|
||||
)
|
||||
|
||||
# It is actually faster to do a whole other for loop here as the copy from present to past is fairly slow
|
||||
# and will run asynchronously while we do the next for loop
|
||||
cumulative_length = 0
|
||||
for i, input_length in enumerate(batch.input_lengths):
|
||||
# Indexing metadata
|
||||
start_index = cumulative_length
|
||||
end_index = cumulative_length + input_length
|
||||
|
||||
# Indices to copy present at the correct place in past_key_values
|
||||
torch.arange(
|
||||
start_index + i,
|
||||
end_index + i,
|
||||
dtype=torch.int64,
|
||||
device=self.device,
|
||||
out=past_indices[start_index:end_index],
|
||||
)
|
||||
cumulative_length += input_length
|
||||
|
||||
# Copy from present to past_key_values
|
||||
batch.past_key_values[:, past_indices] = present
|
||||
|
||||
# Initialize past_key_values in prefill for len(batch) == 1
|
||||
elif prefill:
|
||||
# present is already pre-padded
|
||||
batch.past_key_values = present
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
|
@ -496,6 +545,102 @@ class FlashCausalLM(Model):
|
|||
generations: List[Generation] = []
|
||||
stopped = True
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.input_lengths,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
)
|
||||
|
||||
# We do two for loops as the first one can run completely asynchronously from the GPU while for the second
|
||||
# one, we need to first do a GPU <-> CPU sync
|
||||
# It is faster if we delay this sync for the maximum amount of time
|
||||
|
||||
# For each member of the batch
|
||||
for i, (
|
||||
input_length,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_input_ids,
|
||||
) in enumerate(iterator):
|
||||
# Indexing metadata
|
||||
start_index = cumulative_length
|
||||
end_index = cumulative_length + input_length
|
||||
|
||||
if prefill:
|
||||
# Prefill mode
|
||||
# out is of shape [cumulative_sequence_lengths, vocab_size]
|
||||
# only take last token logit
|
||||
logits = out[end_index - 1 : end_index]
|
||||
|
||||
# Create all_input_ids_tensor that will be used by token warpers (for example, RepetitionPenalty)
|
||||
all_input_ids_tensor = batch.input_ids.new_empty(
|
||||
input_length + stopping_criteria.max_new_tokens
|
||||
)
|
||||
# Copy from batch.input_ids to all_input_ids_tensor
|
||||
all_input_ids_tensor[:input_length] = batch.input_ids[
|
||||
start_index:end_index
|
||||
]
|
||||
batch.all_input_ids_tensor.append(all_input_ids_tensor)
|
||||
|
||||
# Initialize position_ids
|
||||
# In decode, we do not need this as we can just increment position ids
|
||||
next_position_ids[i] = batch.position_ids[end_index - 1]
|
||||
|
||||
# Used to gather prefill logprobs
|
||||
# Copy batch.input_ids to prefill_token_indices
|
||||
if len(batch) > 1:
|
||||
prefill_tokens_indices[
|
||||
start_index : end_index - 1
|
||||
] = batch.input_ids[start_index + 1 : end_index]
|
||||
else:
|
||||
# Set prefill_tokens_indices to the correct slice
|
||||
prefill_tokens_indices = batch.input_ids[
|
||||
start_index + 1 : end_index
|
||||
]
|
||||
else:
|
||||
# Decode mode
|
||||
# out is of shape [batch_size, vocab_size]
|
||||
logits = out[i].view(1, -1)
|
||||
|
||||
all_input_ids_tensor = batch.all_input_ids_tensor[i]
|
||||
|
||||
# Select next token
|
||||
next_token_id, logprob = next_token_chooser(
|
||||
all_input_ids_tensor[None, :input_length], logits
|
||||
)
|
||||
|
||||
# Add to all_input_ids_tensor
|
||||
next_token_id_squeezed = next_token_id.view(1)
|
||||
all_input_ids_tensor[input_length] = next_token_id_squeezed
|
||||
|
||||
# Set values
|
||||
next_input_ids[i] = next_token_id_squeezed
|
||||
next_token_logprobs[i] = logprob[-1, next_token_id].view(1)
|
||||
|
||||
cumulative_length += input_length
|
||||
|
||||
# Set values in batch
|
||||
batch.input_ids = next_input_ids
|
||||
batch.position_ids = next_position_ids + 1
|
||||
batch.cu_seqlens = batch.cu_seqlens + batch.cu_seqlens_q
|
||||
|
||||
if prefill:
|
||||
# Get prefill logprobs
|
||||
prefill_logprobs_tensor = torch.log_softmax(out, -1)
|
||||
prefill_logprobs = torch.gather(
|
||||
prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
|
||||
)
|
||||
# GPU <-> CPU sync
|
||||
prefill_logprobs = prefill_logprobs.view(-1).tolist()
|
||||
|
||||
# GPU <-> CPU sync
|
||||
next_token_logprobs = next_token_logprobs.tolist()
|
||||
next_token_ids = batch.input_ids.tolist()
|
||||
|
||||
cumulative_length = 0
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
|
@ -506,6 +651,8 @@ class FlashCausalLM(Model):
|
|||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
batch.all_input_ids_tensor,
|
||||
next_token_ids,
|
||||
next_token_logprobs,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
|
@ -518,34 +665,16 @@ class FlashCausalLM(Model):
|
|||
stopping_criteria,
|
||||
all_input_ids,
|
||||
all_input_ids_tensor,
|
||||
next_token_id,
|
||||
next_token_logprob,
|
||||
) in enumerate(iterator):
|
||||
# Indexing metadata
|
||||
start_index = cumulative_length
|
||||
end_index = cumulative_length + input_length
|
||||
|
||||
prefill = stopping_criteria.current_tokens == 0
|
||||
if prefill:
|
||||
# Prefill mode
|
||||
# out is of shape [cumulative_sequence_lengths, vocab_size]
|
||||
logits = out[start_index:end_index]
|
||||
else:
|
||||
# Decode mode
|
||||
# out is of shape [batch_size, vocab_size]
|
||||
logits = out[i].unsqueeze(0)
|
||||
|
||||
# Select next token
|
||||
next_token_id, logprobs = next_token_chooser(
|
||||
all_input_ids_tensor[None, :input_length], logits
|
||||
)
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_id_item = next_token_id_squeezed.item()
|
||||
|
||||
# Append next token to all tokens
|
||||
all_input_ids.append(next_token_id_item)
|
||||
all_input_ids_tensor[input_length] = next_token_id_item
|
||||
all_input_ids.append(next_token_id)
|
||||
|
||||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id_item]
|
||||
next_token_text, offset, token_offset = self.decode_token(
|
||||
all_input_ids,
|
||||
offset,
|
||||
|
@ -554,7 +683,7 @@ class FlashCausalLM(Model):
|
|||
|
||||
# Evaluate stopping criteria
|
||||
stop, reason = stopping_criteria(
|
||||
next_token_id_item,
|
||||
next_token_id,
|
||||
next_token_text,
|
||||
)
|
||||
|
||||
|
@ -579,9 +708,9 @@ class FlashCausalLM(Model):
|
|||
# Prefill
|
||||
if prefill:
|
||||
# Remove generated token to only have prefill and add nan for first prompt token
|
||||
prefill_logprobs = [float("nan")] + logprobs.gather(
|
||||
1, all_input_ids_tensor[1:input_length].unsqueeze(1)
|
||||
).squeeze(1)[:-1].tolist()
|
||||
request_prefill_logprobs = [float("nan")] + prefill_logprobs[
|
||||
start_index : end_index - 1
|
||||
]
|
||||
prefill_token_ids = all_input_ids[:-1]
|
||||
prefill_texts = self.tokenizer.batch_decode(
|
||||
prefill_token_ids,
|
||||
|
@ -589,7 +718,7 @@ class FlashCausalLM(Model):
|
|||
skip_special_tokens=False,
|
||||
)
|
||||
prefill_tokens = PrefillTokens(
|
||||
prefill_token_ids, prefill_logprobs, prefill_texts
|
||||
prefill_token_ids, request_prefill_logprobs, prefill_texts
|
||||
)
|
||||
else:
|
||||
prefill_tokens = None
|
||||
|
@ -597,31 +726,23 @@ class FlashCausalLM(Model):
|
|||
generation = Generation(
|
||||
request.id,
|
||||
prefill_tokens,
|
||||
next_token_id_item,
|
||||
next_token_id,
|
||||
next_token_logprob,
|
||||
next_token_text,
|
||||
next_token_id_item in self.all_special_ids,
|
||||
next_token_id in self.all_special_ids,
|
||||
generated_text,
|
||||
)
|
||||
|
||||
generations.append(generation)
|
||||
cumulative_length += input_length
|
||||
new_input_length = input_length + 1
|
||||
|
||||
# Update values
|
||||
batch.input_ids[i] = next_token_id
|
||||
batch.position_ids[i] = input_length
|
||||
batch.input_lengths[i] = new_input_length
|
||||
batch.offsets[i] = offset
|
||||
batch.token_offsets[i] = token_offset
|
||||
batch.all_input_ids[i] = all_input_ids
|
||||
batch.all_input_ids_tensor[i] = all_input_ids_tensor
|
||||
batch.max_seqlen = max(batch.max_seqlen, new_input_length)
|
||||
if len(batch) != 1:
|
||||
# Add each sequence before its padding
|
||||
batch.past_key_values[i * 2] = present[:, start_index:end_index]
|
||||
# Cumulative sum
|
||||
batch.cu_seqlens[(i + 1)] = batch.cu_seqlens[i] + new_input_length
|
||||
batch.max_seqlen = batch.max_seqlen + 1
|
||||
cumulative_length += input_length
|
||||
|
||||
# No need to return a batch if we know that all requests stopped
|
||||
return generations, batch if not stopped else None
|
||||
|
|
|
@ -32,7 +32,7 @@ class FlashLlama(FlashCausalLM):
|
|||
self.past_pad = None
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
dtype = torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashLlama is only available on GPU")
|
||||
|
||||
|
@ -161,7 +161,7 @@ class FlashLlamaSharded(FlashLlama):
|
|||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
dtype = torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashLlama is only available on GPU")
|
||||
|
||||
|
|
|
@ -38,7 +38,7 @@ class FlashNeoXSharded(FlashNeoX):
|
|||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
dtype = torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashNeoX is only available on GPU")
|
||||
|
||||
|
|
|
@ -31,7 +31,7 @@ class FlashSantacoder(FlashCausalLM):
|
|||
self.past_pad = None
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
dtype = torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashSantacoder is only available on GPU")
|
||||
|
||||
|
@ -178,7 +178,7 @@ class FlashSantacoderSharded(FlashSantacoder):
|
|||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
dtype = torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashSantacoderSharded is only available on GPU")
|
||||
|
||||
|
|
Loading…
Reference in New Issue