Add RoCm support (#1243)

This PR adds support for AMD Instinct MI210 & MI250 GPUs, with paged
attention and FAv2 support.

Remaining items to discuss, on top of possible others:
* Should we have a
`ghcr.io/huggingface/text-generation-inference:1.1.0+rocm` hosted image,
or is it too early?
* Should we set up a CI on MI210/MI250? I don't have access to the
runners of TGI though.
* Are we comfortable with those changes being directly in TGI, or do we
need a fork?

---------

Co-authored-by: Felix Marty <felix@hf.co>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
Co-authored-by: Your Name <you@example.com>
This commit is contained in:
fxmarty 2023-11-27 14:08:12 +01:00 committed by GitHub
parent ed2a3f617e
commit b2b5df0e94
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 575 additions and 82 deletions

View File

@ -59,7 +59,7 @@ jobs:
build-and-push-image: build-and-push-image:
concurrency: concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }} group: ${{ github.workflow }}-build-and-push-image-${{ github.head_ref || github.run_id }}
cancel-in-progress: true cancel-in-progress: true
needs: start-runner # required to start the main job when the runner is ready needs: start-runner # required to start the main job when the runner is ready
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
@ -146,6 +146,95 @@ jobs:
cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache,mode=min cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache,mode=min
cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache,mode=min cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache,mode=min
build-and-push-image-rocm:
concurrency:
group: ${{ github.workflow }}-build-and-push-image-rocm-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
needs: start-runner # required to start the main job when the runner is ready
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
permissions:
contents: write
packages: write
# This is used to complete the identity challenge
# with sigstore/fulcio when running outside of PRs.
id-token: write
security-events: write
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Initialize Docker Buildx
uses: docker/setup-buildx-action@v2.0.0
with:
install: true
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1
- name: Tailscale
uses: tailscale/github-action@7bd8039bf25c23c4ab1b8d6e2cc2da2280601966
with:
authkey: ${{ secrets.TAILSCALE_AUTHKEY }}
- name: Login to GitHub Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v2
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Login to internal Container Registry
uses: docker/login-action@v2.1.0
with:
username: ${{ secrets.TAILSCALE_DOCKER_USERNAME }}
password: ${{ secrets.TAILSCALE_DOCKER_PASSWORD }}
registry: registry.internal.huggingface.tech
- name: Login to Azure Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v2.1.0
with:
username: ${{ secrets.AZURE_DOCKER_USERNAME }}
password: ${{ secrets.AZURE_DOCKER_PASSWORD }}
registry: db4c2190dd824d1f950f5d1555fbadf0.azurecr.io
# If pull request
- name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name == 'pull_request' }}
id: meta-pr
uses: docker/metadata-action@v4.3.0
with:
images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
tags: |
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}-rocm
# If main, release or tag
- name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name != 'pull_request' }}
id: meta
uses: docker/metadata-action@v4.3.0
with:
flavor: |
latest=false
images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
ghcr.io/huggingface/text-generation-inference
db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference
tags: |
type=semver,pattern={{version}}-rocm
type=semver,pattern={{major}}.{{minor}}-rocm
type=raw,value=latest-rocm,enable=${{ github.ref == format('refs/heads/{0}', github.event.repository.default_branch) }}
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}-rocm
- name: Build and push Docker image
id: build-and-push
uses: docker/build-push-action@v4
with:
context: .
file: Dockerfile_amd
push: true
platforms: 'linux/amd64'
build-args: |
GIT_SHA=${{ env.GITHUB_SHA }}
DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }}-rocm
tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }}
labels: ${{ steps.meta.outputs.labels || steps.meta-pr.outputs.labels }}
cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache-rocm,mode=min
cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache-rocm,mode=min
integration-tests: integration-tests:
concurrency: concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }} group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
@ -153,6 +242,7 @@ jobs:
needs: needs:
- start-runner - start-runner
- build-and-push-image # Wait for the docker image to be built - build-and-push-image # Wait for the docker image to be built
- build-and-push-image-rocm
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
env: env:
DOCKER_VOLUME: /cache DOCKER_VOLUME: /cache
@ -187,6 +277,7 @@ jobs:
needs: needs:
- start-runner - start-runner
- build-and-push-image - build-and-push-image
- build-and-push-image-rocm
- integration-tests - integration-tests
runs-on: ubuntu-latest runs-on: ubuntu-latest
env: env:

View File

@ -106,7 +106,7 @@ WORKDIR /usr/src
COPY server/Makefile-flash-att-v2 Makefile COPY server/Makefile-flash-att-v2 Makefile
# Build specific version of flash attention v2 # Build specific version of flash attention v2
RUN make build-flash-attention-v2 RUN make build-flash-attention-v2-cuda
# Build Transformers exllama kernels # Build Transformers exllama kernels
FROM kernel-builder as exllama-kernels-builder FROM kernel-builder as exllama-kernels-builder
@ -152,7 +152,7 @@ WORKDIR /usr/src
COPY server/Makefile-vllm Makefile COPY server/Makefile-vllm Makefile
# Build specific version of vllm # Build specific version of vllm
RUN make build-vllm RUN make build-vllm-cuda
# Text Generation Inference base image # Text Generation Inference base image
FROM nvidia/cuda:12.1.0-base-ubuntu20.04 as base FROM nvidia/cuda:12.1.0-base-ubuntu20.04 as base
@ -209,7 +209,7 @@ COPY server server
COPY server/Makefile server/Makefile COPY server/Makefile server/Makefile
RUN cd server && \ RUN cd server && \
make gen-server && \ make gen-server && \
pip install -r requirements.txt && \ pip install -r requirements_cuda.txt && \
pip install ".[bnb, accelerate, quantize, peft]" --no-cache-dir pip install ".[bnb, accelerate, quantize, peft]" --no-cache-dir
# Install benchmarker # Install benchmarker
@ -224,7 +224,7 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-ins
g++ \ g++ \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
# AWS Sagemaker compatbile image # AWS Sagemaker compatible image
FROM base as sagemaker FROM base as sagemaker
COPY sagemaker-entrypoint.sh entrypoint.sh COPY sagemaker-entrypoint.sh entrypoint.sh

153
Dockerfile_amd Normal file
View File

@ -0,0 +1,153 @@
# Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.71 AS chef
WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
FROM chef as planner
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto
COPY benchmark benchmark
COPY router router
COPY launcher launcher
RUN cargo chef prepare --recipe-path recipe.json
FROM chef AS builder
ARG GIT_SHA
ARG DOCKER_LABEL
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
unzip -o $PROTOC_ZIP -d /usr/local 'include/*' && \
rm -f $PROTOC_ZIP
COPY --from=planner /usr/src/recipe.json recipe.json
RUN cargo chef cook --release --recipe-path recipe.json
COPY Cargo.toml Cargo.toml
COPY rust-toolchain.toml rust-toolchain.toml
COPY proto proto
COPY benchmark benchmark
COPY router router
COPY launcher launcher
RUN cargo build --release
# Text Generation Inference base image for RoCm
FROM rocm/dev-ubuntu-20.04:5.7 as base
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \
ca-certificates \
ccache \
curl \
git \
make \
libssl-dev \
g++ \
# Needed to build VLLM & flash.
rocthrust-dev \
hipsparse-dev \
hipblas-dev && \
rm -rf /var/lib/apt/lists/*
# Keep in sync with `server/pyproject.toml
ARG MAMBA_VERSION=23.1.0-1
ARG PYTORCH_VERSION='2.2.0.dev0'
ARG ROCM_VERSION='5.7'
ARG PYTHON_VERSION='3.10.10'
# Automatically set by buildx
ARG TARGETPLATFORM
ENV PATH /opt/conda/bin:$PATH
# TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda.
# Install mamba
# translating Docker's TARGETPLATFORM into mamba arches
RUN case ${TARGETPLATFORM} in \
"linux/arm64") MAMBA_ARCH=aarch64 ;; \
*) MAMBA_ARCH=x86_64 ;; \
esac && \
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
RUN chmod +x ~/mambaforge.sh && \
bash ~/mambaforge.sh -b -p /opt/conda && \
mamba init && \
rm ~/mambaforge.sh
# Install PyTorch nightly (2.2.0.dev2023) compiled against RoCm 5.7, as VLLM can not be compiled with RoCm 5.6.
RUN pip install --pre torch==2.2.0.dev20231106 --index-url https://download.pytorch.org/whl/nightly/rocm5.7
FROM base AS kernel-builder
# Build vllm kernels
FROM kernel-builder AS vllm-builder
WORKDIR /usr/src
COPY server/Makefile-vllm Makefile
# Build specific version of vllm
RUN make build-vllm-rocm
# Build Flash Attention v2 kernels
FROM kernel-builder AS flash-att-v2-builder
WORKDIR /usr/src
COPY server/Makefile-flash-att-v2 Makefile
# Build specific version of flash attention v2
RUN make build-flash-attention-v2-rocm
# Build Transformers CUDA kernels (gpt-neox and bloom)
FROM kernel-builder as custom-kernels-builder
WORKDIR /usr/src
COPY server/custom_kernels/ .
RUN PYTORCH_ROCM_ARCH=gfx90a python setup.py build
FROM base as base-copy
# Text Generation Inference base env
ENV HUGGINGFACE_HUB_CACHE=/data \
HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80
# Copy builds artifacts from vllm builder
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from flash attention v2 builder
COPY --from=flash-att-v2-builder /usr/src/flash-attention-v2/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from custom kernels builder
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Install flash-attention dependencies
RUN pip install einops --no-cache-dir
# Install server
COPY proto proto
COPY server server
COPY server/Makefile server/Makefile
RUN cd server && \
make gen-server && \
pip install -r requirements_rocm.txt && \
pip install ".[accelerate, peft]" --no-cache-dir
# Install benchmarker
COPY --from=builder /usr/src/target/release/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router
COPY --from=builder /usr/src/target/release/text-generation-router /usr/local/bin/text-generation-router
# Install launcher
COPY --from=builder /usr/src/target/release/text-generation-launcher /usr/local/bin/text-generation-launcher
# AWS Sagemaker compatible image
FROM base-copy as sagemaker
COPY sagemaker-entrypoint.sh entrypoint.sh
RUN chmod +x entrypoint.sh
ENTRYPOINT ["./entrypoint.sh"]
# Final image
FROM base-copy
ENTRYPOINT ["text-generation-launcher"]
CMD ["--json-output"]

View File

@ -74,7 +74,9 @@ curl 127.0.0.1:8080/generate \
-H 'Content-Type: application/json' -H 'Content-Type: application/json'
``` ```
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar. **Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
**Note:** TGI supports AMD Instinct MI210 and MI250 [to some extent](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.1.0+rocm --model-id $model` instead of the command above.
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli): To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
``` ```
@ -189,7 +191,7 @@ sudo apt-get install libssl-dev gcc -y
### CUDA Kernels ### CUDA Kernels
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove The custom CUDA kernels are only tested on NVIDIA A100, AMD MI210 and AMD MI250. If you have any installation or runtime issues, you can remove
the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable. the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.
Be aware that the official Docker image has them enabled by default. Be aware that the official Docker image has them enabled by default.

View File

@ -15,6 +15,8 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingf
To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) . We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) . We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
To use TGI on RoCm-enabled AMD GPUs (only MI210 and MI250 are tested), please use the image `ghcr.io/huggingface/text-generation-inference:1.1.1+rocm` instead. For details about the usage on RoCm, please refer to the [Supported Hardware section](./supported_models#supported-hardware) and [AMD documentation](https://rocm.docs.amd.com/en/latest/deploy/docker.html).
</Tip> </Tip>
Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint. Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint.

View File

@ -39,9 +39,9 @@ text-generation-launcher --model-id <PATH-TO-LOCAL-BLOOM>
## Supported Hardware ## Supported Hardware
TGI optimized models are supported on NVIDIA [A100](https://www.nvidia.com/en-us/data-center/a100/), [A10G](https://www.nvidia.com/en-us/data-center/products/a10-gpu/) and [T4](https://www.nvidia.com/en-us/data-center/tesla-t4/) GPUs with CUDA 11.8+. Note that you have to install [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) to use it. For other hardware, continuous batching will still apply, but some operations like flash attention and paged attention will not be executed. TGI optimized models are supported on NVIDIA [A100](https://www.nvidia.com/en-us/data-center/a100/), [A10G](https://www.nvidia.com/en-us/data-center/products/a10-gpu/) and [T4](https://www.nvidia.com/en-us/data-center/tesla-t4/) GPUs with CUDA 11.8+. Note that you have to install [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) to use it. For other NVIDIA GPUs, continuous batching will still apply, but some operations like flash attention and paged attention will not be executed.
TGI also has support of RoCm-enabled AMD Instinct MI210 and MI250 GPUs, with paged attention and flash attention v2 support. The following features are missing from the RoCm version of TGI: quantization and flash [layer norm kernel](https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm).
TGI is also supported on the following AI hardware accelerators: TGI is also supported on the following AI hardware accelerators:
- *Habana first-gen Gaudi and Gaudi2:* check out this [example](https://github.com/huggingface/optimum-habana/tree/main/text-generation-inference) how to serve models with TGI on Gaudi and Gaudi2 with [Optimum Habana](https://huggingface.co/docs/optimum/habana/index) - *Habana first-gen Gaudi and Gaudi2:* check out this [example](https://github.com/huggingface/optimum-habana/tree/main/text-generation-inference) how to serve models with TGI on Gaudi and Gaudi2 with [Optimum Habana](https://huggingface.co/docs/optimum/habana/index)

View File

@ -18,11 +18,12 @@ gen-server:
install: gen-server install: gen-server
pip install pip --upgrade pip install pip --upgrade
pip install -r requirements.txt pip install -r requirements_cuda.txt
pip install -e ".[bnb, accelerate, quantize, peft]" pip install -e ".[bnb, accelerate, quantize, peft]"
run-dev: run-dev:
SAFETENSORS_FAST_GPU=1 python -m torch.distributed.run --nproc_per_node=2 text_generation_server/cli.py serve bigscience/bloom-560m --sharded SAFETENSORS_FAST_GPU=1 python -m torch.distributed.run --nproc_per_node=2 text_generation_server/cli.py serve bigscience/bloom-560m --sharded
export-requirements: export-requirements:
poetry export -o requirements.txt -E bnb --without-hashes poetry export -o requirements_cuda.txt --extras bnb --without-hashes
poetry export -o requirements_rocm.txt --without-hashes

View File

@ -2,7 +2,7 @@ flash_att_commit := 3a9bfd076f98746c73362328958dbc68d145fbec
flash-attention: flash-attention:
# Clone flash attention # Clone flash attention
pip install packaging pip install -U packaging ninja --no-cache-dir
git clone https://github.com/HazyResearch/flash-attention.git git clone https://github.com/HazyResearch/flash-attention.git
build-flash-attention: flash-attention build-flash-attention: flash-attention

View File

@ -1,13 +1,26 @@
flash_att_v2_commit := 02ac572f3ffc4f402e4183aaa6824b45859d3ed3 flash_att_v2_commit := 02ac572f3ffc4f402e4183aaa6824b45859d3ed3
build-flash-attention-v2-cuda: FLASH_ATTN_V2_COMMIT=02ac572f3ffc4f402e4183aaa6824b45859d3ed3
build-flash-attention-v2-cuda: FLASH_REPOSITORY=https://github.com/HazyResearch/flash-attention.git
build-flash-attention-v2-cuda: BRANCH=main
build-flash-attention-v2-cuda: PYTORCH_ROCM_ARCH=""
build-flash-attention-v2-cuda: build-flash-attention-v2
build-flash-attention-v2-rocm: FLASH_ATTN_V2_COMMIT=8736558c287ff2ef28b24878e42828c595ac3e69
build-flash-attention-v2-rocm: FLASH_REPOSITORY=https://github.com/fxmarty/flash-attention-rocm
build-flash-attention-v2-rocm: BRANCH=remove-offload-arch-native
build-flash-attention-v2-rocm: PYTORCH_ROCM_ARCH=gfx90a
build-flash-attention-v2-rocm: build-flash-attention-v2
flash-attention-v2: flash-attention-v2:
# Clone flash attention # Clone flash attention
pip install packaging pip install -U packaging ninja --no-cache-dir
git clone https://github.com/HazyResearch/flash-attention.git flash-attention-v2 git clone --single-branch --branch $(BRANCH) $(FLASH_REPOSITORY) flash-attention-v2
build-flash-attention-v2: flash-attention-v2 build-flash-attention-v2: flash-attention-v2
cd flash-attention-v2 && git fetch && git checkout $(flash_att_v2_commit) cd flash-attention-v2 && git fetch && git checkout $(FLASH_ATTN_V2_COMMIT)
cd flash-attention-v2 && python setup.py build cd flash-attention-v2 && git submodule update --init --recursive
cd flash-attention-v2 && PYTORCH_ROCM_ARCH=$(PYTORCH_ROCM_ARCH) python setup.py build
install-flash-attention-v2: build-flash-attention-v2 install-flash-attention-v2: build-flash-attention-v2
cd flash-attention-v2 && python setup.py install cd flash-attention-v2 && git submodule update --init --recursive && python setup.py install

View File

@ -1,11 +1,20 @@
vllm_commit := f8a1e39fae05ca610be8d5a78be9d40f5274e5fc build-vllm-cuda: REPOSITORY=https://github.com/vllm-project/vllm.git
build-vllm-cuda: VLLM_COMMIT=f8a1e39fae05ca610be8d5a78be9d40f5274e5fc
build-vllm-cuda: BRANCH=main
build-vllm-cuda: build-vllm
build-vllm-rocm: REPOSITORY=https://github.com/fxmarty/vllm-public.git
build-vllm-rocm: VLLM_COMMIT=ad9b7c4095ef54419a0533d254f2ad84bd2dfcae
build-vllm-rocm: BRANCH=rotary-no-positions-split-cos-sin
build-vllm-rocm: build-vllm
vllm: vllm:
# Clone vllm # Clone vllm
git clone https://github.com/vllm-project/vllm.git pip install -U ninja packaging --no-cache-dir
git clone --single-branch --branch $(BRANCH) $(REPOSITORY) vllm
build-vllm: vllm build-vllm: vllm
cd vllm && git fetch && git checkout $(vllm_commit) cd vllm && git fetch && git checkout $(VLLM_COMMIT)
cd vllm && python setup.py build cd vllm && python setup.py build
install-vllm: build-vllm install-vllm: build-vllm

View File

@ -1,5 +1,10 @@
from setuptools import setup from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension from torch.utils.cpp_extension import BuildExtension, CUDAExtension
import torch
extra_compile_args = ["-std=c++17"]
if not torch.version.hip:
extra_compile_args.append("-arch=compute_80")
setup( setup(
name="custom_kernels", name="custom_kernels",
@ -7,12 +12,12 @@ setup(
CUDAExtension( CUDAExtension(
name="custom_kernels.fused_bloom_attention_cuda", name="custom_kernels.fused_bloom_attention_cuda",
sources=["custom_kernels/fused_bloom_attention_cuda.cu"], sources=["custom_kernels/fused_bloom_attention_cuda.cu"],
extra_compile_args=["-arch=compute_80", "-std=c++17"], extra_compile_args=extra_compile_args,
), ),
CUDAExtension( CUDAExtension(
name="custom_kernels.fused_attention_cuda", name="custom_kernels.fused_attention_cuda",
sources=["custom_kernels/fused_attention_cuda.cu"], sources=["custom_kernels/fused_attention_cuda.cu"],
extra_compile_args=["-arch=compute_80", "-std=c++17"], extra_compile_args=extra_compile_args,
), ),
], ],
cmdclass={"build_ext": BuildExtension}, cmdclass={"build_ext": BuildExtension},

View File

@ -0,0 +1,46 @@
backoff==2.2.1 ; python_version >= "3.9" and python_version < "3.13"
certifi==2023.11.17 ; python_version >= "3.9" and python_version < "3.13"
charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13"
click==8.1.7 ; python_version >= "3.9" and python_version < "3.13"
colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows")
deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13"
einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
filelock==3.13.1 ; python_version >= "3.9" and python_version < "3.13"
fsspec==2023.10.0 ; python_version >= "3.9" and python_version < "3.13"
googleapis-common-protos==1.61.0 ; python_version >= "3.9" and python_version < "3.13"
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
grpcio-reflection==1.59.3 ; python_version >= "3.9" and python_version < "3.13"
grpcio-status==1.59.3 ; python_version >= "3.9" and python_version < "3.13"
grpcio==1.59.3 ; python_version >= "3.9" and python_version < "3.13"
hf-transfer==0.1.4 ; python_version >= "3.9" and python_version < "3.13"
huggingface-hub==0.16.4 ; python_version >= "3.9" and python_version < "3.13"
idna==3.4 ; python_version >= "3.9" and python_version < "3.13"
loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13"
numpy==1.26.2 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-api==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-grpc==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-http==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation-grpc==0.36b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation==0.36b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-proto==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-sdk==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-semantic-conventions==0.36b0 ; python_version >= "3.9" and python_version < "3.13"
packaging==23.2 ; python_version >= "3.9" and python_version < "3.13"
pillow==10.1.0 ; python_version >= "3.9" and python_version < "3.13"
protobuf==4.25.1 ; python_version >= "3.9" and python_version < "3.13"
pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13"
regex==2023.10.3 ; python_version >= "3.9" and python_version < "3.13"
requests==2.31.0 ; python_version >= "3.9" and python_version < "3.13"
safetensors==0.3.3 ; python_version >= "3.9" and python_version < "3.13"
scipy==1.11.4 ; python_version >= "3.9" and python_version < "3.13"
sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13"
setuptools==69.0.2 ; python_version >= "3.9" and python_version < "3.13"
tokenizers==0.13.3 ; python_version >= "3.9" and python_version < "3.13"
tqdm==4.66.1 ; python_version >= "3.9" and python_version < "3.13"
transformers==4.33.3 ; python_version >= "3.9" and python_version < "3.13"
typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
typing-extensions==4.8.0 ; python_version >= "3.9" and python_version < "3.13"
urllib3==2.1.0 ; python_version >= "3.9" and python_version < "3.13"
win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13"

View File

@ -0,0 +1,46 @@
backoff==2.2.1 ; python_version >= "3.9" and python_version < "3.13"
certifi==2023.11.17 ; python_version >= "3.9" and python_version < "3.13"
charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13"
click==8.1.7 ; python_version >= "3.9" and python_version < "3.13"
colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows")
deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13"
einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
filelock==3.13.1 ; python_version >= "3.9" and python_version < "3.13"
fsspec==2023.10.0 ; python_version >= "3.9" and python_version < "3.13"
googleapis-common-protos==1.61.0 ; python_version >= "3.9" and python_version < "3.13"
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
grpcio-reflection==1.59.3 ; python_version >= "3.9" and python_version < "3.13"
grpcio-status==1.59.3 ; python_version >= "3.9" and python_version < "3.13"
grpcio==1.59.3 ; python_version >= "3.9" and python_version < "3.13"
hf-transfer==0.1.4 ; python_version >= "3.9" and python_version < "3.13"
huggingface-hub==0.16.4 ; python_version >= "3.9" and python_version < "3.13"
idna==3.4 ; python_version >= "3.9" and python_version < "3.13"
loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13"
numpy==1.26.2 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-api==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-grpc==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp-proto-http==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-exporter-otlp==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation-grpc==0.36b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-instrumentation==0.36b0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-proto==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-sdk==1.15.0 ; python_version >= "3.9" and python_version < "3.13"
opentelemetry-semantic-conventions==0.36b0 ; python_version >= "3.9" and python_version < "3.13"
packaging==23.2 ; python_version >= "3.9" and python_version < "3.13"
pillow==10.1.0 ; python_version >= "3.9" and python_version < "3.13"
protobuf==4.25.1 ; python_version >= "3.9" and python_version < "3.13"
pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13"
regex==2023.10.3 ; python_version >= "3.9" and python_version < "3.13"
requests==2.31.0 ; python_version >= "3.9" and python_version < "3.13"
safetensors==0.3.3 ; python_version >= "3.9" and python_version < "3.13"
scipy==1.11.4 ; python_version >= "3.9" and python_version < "3.13"
sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13"
setuptools==69.0.2 ; python_version >= "3.9" and python_version < "3.13"
tokenizers==0.13.3 ; python_version >= "3.9" and python_version < "3.13"
tqdm==4.66.1 ; python_version >= "3.9" and python_version < "3.13"
transformers==4.33.3 ; python_version >= "3.9" and python_version < "3.13"
typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
typing-extensions==4.8.0 ; python_version >= "3.9" and python_version < "3.13"
urllib3==2.1.0 ; python_version >= "3.9" and python_version < "3.13"
win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13"

View File

@ -26,9 +26,6 @@ from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
# Flash attention imports
import dropout_layer_norm
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import ( from text_generation_server.utils.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
@ -38,6 +35,12 @@ from text_generation_server.utils.layers import (
TensorParallelHead, TensorParallelHead,
get_linear, get_linear,
) )
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
if IS_CUDA_SYSTEM:
import dropout_layer_norm
elif IS_ROCM_SYSTEM:
from vllm import layernorm_ops
class LlamaConfig(PretrainedConfig): class LlamaConfig(PretrainedConfig):
@ -120,7 +123,7 @@ class LlamaRMSNorm(nn.Module):
hidden_states = hidden_states.to(self.weight.dtype) hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states, residual return self.weight * hidden_states, residual
else: elif IS_CUDA_SYSTEM:
# faster post attention rms norm # faster post attention rms norm
normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd( normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
hidden_states, hidden_states,
@ -143,6 +146,22 @@ class LlamaRMSNorm(nn.Module):
res = hidden_states res = hidden_states
return normed_hidden_states, res return normed_hidden_states, res
elif IS_ROCM_SYSTEM:
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
if residual is not None:
hidden_states += residual
residual = hidden_states
out = torch.empty_like(hidden_states)
layernorm_ops.rms_norm(
out,
hidden_states,
self.weight.data,
self.variance_epsilon,
)
return out, residual
else:
raise ValueError("Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
def load_attention(config, prefix, weights): def load_attention(config, prefix, weights):
@ -204,9 +223,6 @@ class FlashLlamaAttention(torch.nn.Module):
self.hidden_size = config.hidden_size self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads self.head_size = self.hidden_size // self.num_heads
# self.rotary_emb = PositionRotaryEmbedding.load(
# config=config, prefix=f"{prefix}.rotary_emb", weights=weights
# )
self.rotary_emb = PositionRotaryEmbedding.static( self.rotary_emb = PositionRotaryEmbedding.static(
config=config, config=config,
dim=self.head_size, dim=self.head_size,
@ -262,8 +278,7 @@ class FlashLlamaAttention(torch.nn.Module):
query = query.view(-1, self.num_heads, self.head_size) query = query.view(-1, self.num_heads, self.head_size)
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
self.rotary_emb(query, cos, sin) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
self.rotary_emb(torch.select(kv, dim=1, index=0), cos, sin)
paged_attention.reshape_and_cache( paged_attention.reshape_and_cache(
kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots

View File

@ -26,11 +26,8 @@ from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
# Flash attention imports
import dropout_layer_norm
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.flash_attn import attention, HAS_FLASH_ATTN_V2 from text_generation_server.utils.flash_attn import attention, HAS_FLASH_ATTN_V2_ROCM, HAS_FLASH_ATTN_V2_CUDA
from text_generation_server.utils.layers import ( from text_generation_server.utils.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
@ -39,8 +36,14 @@ from text_generation_server.utils.layers import (
TensorParallelHead, TensorParallelHead,
get_linear, get_linear,
) )
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
if not HAS_FLASH_ATTN_V2: if IS_CUDA_SYSTEM:
import dropout_layer_norm
elif IS_ROCM_SYSTEM:
from vllm import layernorm_ops
if not HAS_FLASH_ATTN_V2_CUDA and not HAS_FLASH_ATTN_V2_ROCM:
raise ImportError("Mistral model requires flash attn v2") raise ImportError("Mistral model requires flash attn v2")
@ -126,7 +129,7 @@ class MistralRMSNorm(nn.Module):
hidden_states = hidden_states.to(self.weight.dtype) hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states, residual return self.weight * hidden_states, residual
else: elif IS_CUDA_SYSTEM:
# faster post attention rms norm # faster post attention rms norm
normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd( normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
hidden_states, hidden_states,
@ -149,6 +152,22 @@ class MistralRMSNorm(nn.Module):
res = hidden_states res = hidden_states
return normed_hidden_states, res return normed_hidden_states, res
elif IS_ROCM_SYSTEM:
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
if residual is not None:
hidden_states += residual
residual = hidden_states
out = torch.empty_like(hidden_states)
layernorm_ops.rms_norm(
out,
hidden_states,
self.weight.data,
self.variance_epsilon,
)
return out, residual
else:
raise ValueError("Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
def load_attention(config, prefix, weights): def load_attention(config, prefix, weights):
@ -261,8 +280,7 @@ class MistralAttention(torch.nn.Module):
query = query.view(-1, self.num_heads, self.head_size) query = query.view(-1, self.num_heads, self.head_size)
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
self.rotary_emb(query, cos, sin) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
self.rotary_emb(torch.select(kv, dim=1, index=0), cos, sin)
if prefill_cache_indices is not None: if prefill_cache_indices is not None:
kv_to_cache = kv[prefill_cache_indices] kv_to_cache = kv[prefill_cache_indices]

View File

@ -135,8 +135,7 @@ class FlashNeoxAttention(torch.nn.Module):
qkv = qkv.view(-1, 3, self.num_heads, self.head_size) qkv = qkv.view(-1, 3, self.num_heads, self.head_size)
# Inplace rotary # Inplace rotary
self.rotary_emb(qkv[:, 0], cos, sin) self.rotary_emb(qkv[:, 0], qkv[:, 1], cos, sin)
self.rotary_emb(qkv[:, 1], cos, sin)
paged_attention.reshape_and_cache( paged_attention.reshape_and_cache(
qkv[:, 1], qkv[:, 2], kv_cache[0], kv_cache[1], slots qkv[:, 1], qkv[:, 2], kv_cache[0], kv_cache[1], slots

View File

@ -185,8 +185,7 @@ class FlashRWAttention(torch.nn.Module):
kv = kv.view(-1, 2, self.num_heads_kv, self.head_size) kv = kv.view(-1, 2, self.num_heads_kv, self.head_size)
# Inplace rotary # Inplace rotary
self.rotary_emb(query, cos, sin) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
self.rotary_emb(torch.select(kv, dim=1, index=0), cos, sin)
paged_attention.reshape_and_cache( paged_attention.reshape_and_cache(
kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots
@ -301,8 +300,7 @@ class FlashRWLargeAttention(torch.nn.Module):
query = query.reshape(-1, self.num_groups * self.num_heads, self.head_size) query = query.reshape(-1, self.num_groups * self.num_heads, self.head_size)
# Inplace rotary # Inplace rotary
self.rotary_emb(query, cos, sin) self.rotary_emb(query, torch.select(kv, dim=2, index=0), cos, sin)
self.rotary_emb(torch.select(kv, dim=2, index=0), cos, sin)
paged_attention.reshape_and_cache( paged_attention.reshape_and_cache(
kv[:, :, 0].contiguous(), kv[:, :, 0].contiguous(),

View File

@ -55,8 +55,12 @@ from text_generation_server.utils.layers import (
PositionRotaryEmbedding, PositionRotaryEmbedding,
FastLinear, FastLinear,
) )
import dropout_layer_norm from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
if IS_CUDA_SYSTEM:
import dropout_layer_norm
elif IS_ROCM_SYSTEM:
from vllm import layernorm_ops
@dataclass @dataclass
class BaseModelOutputWithPastImage(BaseModelOutputWithPast): class BaseModelOutputWithPastImage(BaseModelOutputWithPast):
@ -370,7 +374,7 @@ class IdeficsRMSNorm(nn.Module):
hidden_states = hidden_states.to(self.weight.dtype) hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states return self.weight * hidden_states
else: elif IS_CUDA_SYSTEM:
# faster post attention rms norm # faster post attention rms norm
unwrap = False unwrap = False
if len(hidden_states.shape) > 2: if len(hidden_states.shape) > 2:
@ -402,6 +406,32 @@ class IdeficsRMSNorm(nn.Module):
normed_hidden_states = normed_hidden_states.view(*shape) normed_hidden_states = normed_hidden_states.view(*shape)
return normed_hidden_states return normed_hidden_states
elif IS_ROCM_SYSTEM:
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
if residual is not None:
hidden_states += residual
residual = hidden_states
unwrap = False
if len(hidden_states.shape) > 2:
unwrap = True
shape = hidden_states.shape
hidden_states = hidden_states.reshape(-1, shape[-1])
out = torch.empty_like(hidden_states)
layernorm_ops.rms_norm(
out,
hidden_states,
self.weight.data,
self.variance_epsilon,
)
if unwrap:
out = out.view(*shape)
return out
else:
raise ValueError("Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
# this was adapted from LlamaMLP # this was adapted from LlamaMLP
@ -581,15 +611,12 @@ class IdeficsAttention(nn.Module):
position_ids.view(-1), max_s, hidden_states.dtype position_ids.view(-1), max_s, hidden_states.dtype
) )
shape = query_states.shape query_shape = query_states.shape
query_states = self.rotary_emb( key_shape = key_states.shape
query_states.view(-1, *shape[2:]), cos, sin self.rotary_emb(query_states.view(-1, *query_shape[2:]), key_states.reshape(-1, *key_shape[2:]), cos, sin)
).view(shape)
shape = key_states.shape query_states = query_states.view(query_shape)
key_states = self.rotary_emb( key_states = key_states.view(key_shape)
key_states.reshape(-1, *shape[2:]), cos, sin
).view(shape)
query_states = query_states.transpose(1, 2) query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2) key_states = key_states.transpose(1, 2)

View File

@ -3,6 +3,8 @@ import torch
from loguru import logger from loguru import logger
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
if os.getenv("USE_FLASH_ATTENTION", "").lower() == "false": if os.getenv("USE_FLASH_ATTENTION", "").lower() == "false":
raise ImportError("`USE_FLASH_ATTENTION` is false.") raise ImportError("`USE_FLASH_ATTENTION` is false.")
@ -15,7 +17,8 @@ is_sm8x = major == 8 and minor >= 0
is_sm90 = major == 9 and minor == 0 is_sm90 = major == 9 and minor == 0
HAS_FLASH_ATTN = False HAS_FLASH_ATTN = False
HAS_FLASH_ATTN_V2 = False HAS_FLASH_ATTN_V2_CUDA = False
HAS_FLASH_ATTN_V2_ROCM = False
try: try:
try: try:
import flash_attn_2_cuda import flash_attn_2_cuda
@ -30,7 +33,8 @@ try:
f"GPU with CUDA capability {major} {minor} is not supported for " f"GPU with CUDA capability {major} {minor} is not supported for "
"Flash Attention V2" "Flash Attention V2"
) )
HAS_FLASH_ATTN_V2 = True HAS_FLASH_ATTN_V2_CUDA = IS_CUDA_SYSTEM
HAS_FLASH_ATTN_V2_ROCM = IS_ROCM_SYSTEM
except ImportError as e: except ImportError as e:
try: try:
import flash_attn_cuda import flash_attn_cuda
@ -41,10 +45,17 @@ except ImportError as e:
"or install flash attention with `cd server && make install install-flash-attention`" "or install flash attention with `cd server && make install install-flash-attention`"
) from e ) from e
if not (is_sm75 or is_sm8x or is_sm90): if IS_CUDA_SYSTEM and not (is_sm75 or is_sm8x or is_sm90):
raise ImportError( raise ImportError(
f"GPU with CUDA capability {major} {minor} is not supported" f"GPU with CUDA capability {major} {minor} is not supported"
) from e ) from e
elif IS_ROCM_SYSTEM:
for idx in range(torch.cuda.device_count()):
if "MI210" not in torch.cuda.get_device_name(idx) and "MI250" not in torch.cuda.get_device_name(idx):
raise ImportError(
f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention"
)
logger.warning(f"Unable to use Flash Attention V2: {e}") logger.warning(f"Unable to use Flash Attention V2: {e}")
HAS_FLASH_ATTN = True HAS_FLASH_ATTN = True
@ -59,7 +70,7 @@ def attention(
softmax_scale, softmax_scale,
window_size_left=-1, window_size_left=-1,
): ):
if HAS_FLASH_ATTN_V2: if HAS_FLASH_ATTN_V2_CUDA:
return flash_attn_2_cuda.varlen_fwd( return flash_attn_2_cuda.varlen_fwd(
q, q,
k, k,
@ -78,8 +89,28 @@ def attention(
False, False,
None, None,
) )
elif HAS_FLASH_ATTN_V2_ROCM:
if window_size_left != -1:
raise ValueError(f"RoCm version of Flash Attention v2 does not support window attention (window_size_left != -1, got window_size_left={window_size_left}).")
if HAS_FLASH_ATTN: # RoCm flash API does not take the window_size_left and window_size_right arguments.
return flash_attn_2_cuda.varlen_fwd(
q,
k,
v,
out,
cu_seqlens,
cu_seqlens,
max_s,
max_s,
0.0,
softmax_scale,
False,
True,
False,
None,
)
elif HAS_FLASH_ATTN:
if window_size_left != -1: if window_size_left != -1:
raise NotImplementedError( raise NotImplementedError(
"window_size_left is only available with flash attn v2" "window_size_left is only available with flash attn v2"

View File

@ -0,0 +1,4 @@
import torch
IS_ROCM_SYSTEM = torch.version.hip is not None
IS_CUDA_SYSTEM = torch.version.cuda is not None

View File

@ -12,14 +12,13 @@ HAS_BITS_AND_BYTES = True
try: try:
import bitsandbytes as bnb import bitsandbytes as bnb
from bitsandbytes.nn import Int8Params, Params4bit from bitsandbytes.nn import Int8Params, Params4bit
except ImportError: except ImportError:
HAS_BITS_AND_BYTES = False HAS_BITS_AND_BYTES = False
from accelerate import init_empty_weights from accelerate import init_empty_weights
from text_generation_server.utils.gptq.quant_linear import QuantLinear from text_generation_server.utils.gptq.quant_linear import QuantLinear
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
HAS_AWQ = True HAS_AWQ = True
try: try:
@ -525,11 +524,14 @@ class TensorParallelEmbedding(nn.Module):
try: try:
if IS_CUDA_SYSTEM:
import dropout_layer_norm import dropout_layer_norm
else:
dropout_layer_norm = None
class FastLayerNorm(nn.LayerNorm): class FastLayerNorm(nn.LayerNorm):
def forward(self, hidden_states, residual=None): def forward(self, hidden_states, residual=None):
if hidden_states.shape[-1] > 8192: if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
if residual is not None: if residual is not None:
hidden_states += residual hidden_states += residual
residual = hidden_states residual = hidden_states
@ -561,14 +563,16 @@ try:
residual = hidden_states residual = hidden_states
return normed_hidden_states, residual return normed_hidden_states, residual
except ImportError: except ImportError:
pass pass
try: try:
if IS_CUDA_SYSTEM:
from flash_attn.layers.rotary import RotaryEmbedding from flash_attn.layers.rotary import RotaryEmbedding
import rotary_emb import rotary_emb
elif IS_ROCM_SYSTEM:
from vllm import pos_encoding_ops
def _create_inv_freq(dim, base, device): def _create_inv_freq(dim, base, device):
inv_freq = 1.0 / ( inv_freq = 1.0 / (
@ -597,6 +601,37 @@ try:
self.scaling_factor = scaling_factor self.scaling_factor = scaling_factor
self.dynamic_args = None self.dynamic_args = None
def forward(self, query: torch.Tensor, key: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
# Such controlflows may add some overhead.
if IS_CUDA_SYSTEM:
rotary_dim = cos.shape[-1]
q1 = query[..., :rotary_dim]
q2 = query[..., rotary_dim : 2 * rotary_dim]
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
k1 = key[..., :rotary_dim]
k2 = key[..., rotary_dim : 2 * rotary_dim]
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
elif IS_ROCM_SYSTEM:
# NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
# Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773
head_size = query.shape[-1]
# Inplace operation, updating query and key.
pos_encoding_ops.rotary_embedding(
query,
key,
head_size,
cos,
sin,
True
)
else:
raise ValueError("Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
@classmethod @classmethod
def static(cls, config, dim, base, device): def static(cls, config, dim, base, device):
inv_freq = _create_inv_freq(dim, base, device) inv_freq = _create_inv_freq(dim, base, device)
@ -699,21 +734,19 @@ try:
""" """
Return cos and sin for the asked position ids Return cos and sin for the asked position ids
""" """
if IS_ROCM_SYSTEM:
# For RoCm, we always use float cos/sin to avoid a cast.
# For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
# But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
dtype = torch.float32
self._update_cos_sin_cache(dtype, position_ids.device, max_s) self._update_cos_sin_cache(dtype, position_ids.device, max_s)
cos = torch.index_select(self._cos_cached, 0, position_ids) cos = torch.index_select(self._cos_cached, 0, position_ids)
sin = torch.index_select(self._sin_cached, 0, position_ids) sin = torch.index_select(self._sin_cached, 0, position_ids)
# Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
return cos.unsqueeze(1), sin.unsqueeze(1) return cos.unsqueeze(1), sin.unsqueeze(1)
def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
rotary_dim = cos.shape[-1]
x1 = x[..., :rotary_dim]
x2 = x[..., rotary_dim : 2 * rotary_dim]
rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False)
return x
class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding): class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor): def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
inv_freq = _create_inv_freq(dim, base, device) inv_freq = _create_inv_freq(dim, base, device)