Update documentation for Supported models (#2386)
* Minor doc fixes * up. * Other minor updates.
This commit is contained in:
parent
977534bcb8
commit
b2b9c42724
34
README.md
34
README.md
|
@ -13,7 +13,7 @@
|
|||
<img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
|
||||
</a>
|
||||
|
||||
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
|
||||
A Rust, Python and gRPC server for text generation inference. Used in production at [Hugging Face](https://huggingface.co)
|
||||
to power Hugging Chat, the Inference API and Inference Endpoint.
|
||||
|
||||
</div>
|
||||
|
@ -42,6 +42,7 @@ Text Generation Inference (TGI) is a toolkit for deploying and serving Large Lan
|
|||
- Tensor Parallelism for faster inference on multiple GPUs
|
||||
- Token streaming using Server-Sent Events (SSE)
|
||||
- Continuous batching of incoming requests for increased total throughput
|
||||
- [Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) compatible with Open AI Chat Completion API
|
||||
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
|
||||
- Quantization with :
|
||||
- [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
|
||||
|
@ -49,7 +50,7 @@ Text Generation Inference (TGI) is a toolkit for deploying and serving Large Lan
|
|||
- [EETQ](https://github.com/NetEase-FuXi/EETQ)
|
||||
- [AWQ](https://github.com/casper-hansen/AutoAWQ)
|
||||
- [Marlin](https://github.com/IST-DASLab/marlin)
|
||||
- [fp8]()
|
||||
- [fp8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/)
|
||||
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
|
||||
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
|
||||
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
|
||||
|
@ -94,6 +95,29 @@ curl 127.0.0.1:8080/generate_stream \
|
|||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
You can also use [TGI's Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) to obtain Open AI Chat Completion API compatible responses.
|
||||
|
||||
```bash
|
||||
curl localhost:3000/v1/chat/completions \
|
||||
-X POST \
|
||||
-d '{
|
||||
"model": "tgi",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What is deep learning?"
|
||||
}
|
||||
],
|
||||
"stream": true,
|
||||
"max_tokens": 20
|
||||
}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
|
||||
|
||||
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.2.0-rocm --model-id $model` instead of the command above.
|
||||
|
@ -122,7 +146,7 @@ For example, if you want to serve the gated Llama V2 model variants:
|
|||
or with Docker:
|
||||
|
||||
```shell
|
||||
model=meta-llama/Llama-2-7b-chat-hf
|
||||
model=meta-llama/Meta-Llama-3.1-8B-Instruct
|
||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
token=<your cli READ token>
|
||||
|
||||
|
@ -234,7 +258,7 @@ text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
|
|||
|
||||
### Quantization
|
||||
|
||||
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:
|
||||
You can also run pre-quantized weights (AWQ, GPTQ, Marlin) or on-the-fly quantize weights with bitsandbytes, EETQ, fp8, to reduce the VRAM requirement:
|
||||
|
||||
```shell
|
||||
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize
|
||||
|
@ -242,6 +266,8 @@ text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantiz
|
|||
|
||||
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.
|
||||
|
||||
Read more about quantization in the [Quantization documentation](https://huggingface.co/docs/text-generation-inference/en/conceptual/quantization).
|
||||
|
||||
## Develop
|
||||
|
||||
```shell
|
||||
|
|
|
@ -11,7 +11,7 @@ We recommend using the official quantization scripts for creating your quants:
|
|||
|
||||
For on-the-fly quantization you simply need to pass one of the supported quantization types and TGI takes care of the rest.
|
||||
|
||||
## Quantization with bitsandbytes
|
||||
## Quantization with bitsandbytes, EETQ & fp8
|
||||
|
||||
bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models. Unlike GPTQ quantization, bitsandbytes doesn't require a calibration dataset or any post-processing – weights are automatically quantized on load. However, inference with bitsandbytes is slower than GPTQ or FP16 precision.
|
||||
|
||||
|
@ -32,7 +32,7 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingf
|
|||
|
||||
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
|
||||
|
||||
Use `eetq` or `fp8` for other quantization schemes.
|
||||
Similarly you can use pass you can pass `--quantize eetq` or `--quantize fp8` for respective quantization schemes.
|
||||
|
||||
In addition to this, TGI allows creating GPTQ quants directly by passing the model weights and a calibration dataset.
|
||||
|
||||
|
|
|
@ -21,7 +21,7 @@ TGI supports various hardware. Make sure to check the [Using TGI with Nvidia GPU
|
|||
|
||||
## Consuming TGI
|
||||
|
||||
Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint.
|
||||
Once TGI is running, you can use the `generate` endpoint or the Open AI Chat Completion API compatible [Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint.
|
||||
|
||||
<inferencesnippet>
|
||||
<python>
|
||||
|
|
|
@ -1,22 +1,22 @@
|
|||
|
||||
# Supported Models and Hardware
|
||||
|
||||
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models are hardware are supported.
|
||||
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models (VLMs & LLMs) are supported.
|
||||
|
||||
## Supported Models
|
||||
|
||||
- [Deepseek V2](https://huggingface.co/deepseek-ai/DeepSeek-V2)
|
||||
- [Idefics 2](https://huggingface.co/HuggingFaceM4/idefics2-8b) (Multimodal)
|
||||
- [Llava Next (1.6)](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) (Multimodal)
|
||||
- [Llama](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
||||
- [Llama](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f)
|
||||
- [Phi 3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
|
||||
- [Gemma](https://huggingface.co/google/gemma-7b)
|
||||
- [PaliGemma](https://huggingface.co/google/paligemma-3b-pt-224)
|
||||
- [Gemma2](https://huggingface.co/google/gemma2-9b)
|
||||
- [Gemma2](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315)
|
||||
- [Cohere](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
|
||||
- [Dbrx](https://huggingface.co/databricks/dbrx-instruct)
|
||||
- [Mamba](https://huggingface.co/state-spaces/mamba-2.8b-slimpj)
|
||||
- [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
|
||||
- [Mistral](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407)
|
||||
- [Mixtral](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1)
|
||||
- [Gpt Bigcode](https://huggingface.co/bigcode/gpt_bigcode-santacoder)
|
||||
- [Phi](https://huggingface.co/microsoft/phi-1_5)
|
||||
|
|
|
@ -180,7 +180,7 @@ class ModelType(enum.Enum):
|
|||
LLAMA = {
|
||||
"type": "llama",
|
||||
"name": "Llama",
|
||||
"url": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
|
||||
}
|
||||
PHI3 = {
|
||||
"type": "phi3",
|
||||
|
@ -200,7 +200,7 @@ class ModelType(enum.Enum):
|
|||
GEMMA2 = {
|
||||
"type": "gemma2",
|
||||
"name": "Gemma2",
|
||||
"url": "https://huggingface.co/google/gemma2-9b",
|
||||
"url": "https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315",
|
||||
}
|
||||
COHERE = {
|
||||
"type": "cohere",
|
||||
|
@ -220,7 +220,7 @@ class ModelType(enum.Enum):
|
|||
MISTRAL = {
|
||||
"type": "mistral",
|
||||
"name": "Mistral",
|
||||
"url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
|
||||
"url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
|
||||
}
|
||||
MIXTRAL = {
|
||||
"type": "mixtral",
|
||||
|
|
|
@ -7,7 +7,7 @@ import os
|
|||
TEMPLATE = """
|
||||
# Supported Models and Hardware
|
||||
|
||||
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models are hardware are supported.
|
||||
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models (VLMs & LLMs) are supported.
|
||||
|
||||
## Supported Models
|
||||
|
||||
|
|
Loading…
Reference in New Issue