Factor out sharding of packed tensors (#2059)
For Phi-3-Small I need to shard a packed QKV bias tensor, for which I implemented the `Weights.get_packed_sharded` method. However, this method can also replace the `Weights._get_qweight` method and the custom sharding code from `Weights.get_weights_col_packed`.
This commit is contained in:
parent
f5a9837592
commit
bcb3faa1c2
|
@ -130,29 +130,57 @@ class Weights:
|
|||
), f"The choosen size {size} is not compatible with sharding on {world_size} shards"
|
||||
return self.get_partial_sharded(tensor_name, dim)
|
||||
|
||||
def _get_qweight(self, name: str, block_sizes: Union[int, List[int]]):
|
||||
slice_ = self._get_slice(name)
|
||||
total_size = slice_.get_shape()[1]
|
||||
def get_packed_sharded(
|
||||
self, tensor_name: str, dim: int, block_sizes: Union[int, List[int]]
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Get a shard from a tensor that packs multiple tensors.
|
||||
|
||||
When a tensor packs multiple tensors (such as QKV or an up
|
||||
projection + gate projection), sharding with `get_sharded` is not
|
||||
safe since it would not split the packed tensors across shards.
|
||||
|
||||
This method shards a tensor, such that the packed tensors are
|
||||
split across shards.
|
||||
|
||||
The columns are split in equally sized blocks when blocks is an `int`, or
|
||||
in blocks proportional given to the sizes. For instance `[2, 1, 1]` will
|
||||
divide an input with dimensionality `1024` in `[512, 256, 256]`. This is
|
||||
convenient for e.g. splitting QKV without knowing the storage details of
|
||||
quantized weights.
|
||||
"""
|
||||
slice_ = self._get_slice(tensor_name)
|
||||
total_size = slice_.get_shape()[dim]
|
||||
block_sizes = _blocks_to_block_sizes(total_size=total_size, blocks=block_sizes)
|
||||
|
||||
world_size = self.process_group.size()
|
||||
rank = self.process_group.rank()
|
||||
|
||||
weights = []
|
||||
tensors = []
|
||||
block_offset = 0
|
||||
for block_size in block_sizes:
|
||||
assert (
|
||||
block_size % world_size == 0
|
||||
), f"Prepacked qkv cannot be sharded across {world_size} shards"
|
||||
), f"Prepacked tensor cannot be sharded across {world_size} shards"
|
||||
shard_block_size = block_size // world_size
|
||||
start = rank * shard_block_size
|
||||
stop = (rank + 1) * shard_block_size
|
||||
weights.append(slice_[:, block_offset + start : block_offset + stop])
|
||||
if dim == 0:
|
||||
tensor = slice_[block_offset + start : block_offset + stop]
|
||||
elif dim == 1:
|
||||
tensor = slice_[:, block_offset + start : block_offset + stop]
|
||||
else:
|
||||
raise NotImplementedError("Currently only dim=0 or dim=1 is supported")
|
||||
tensors.append(tensor)
|
||||
block_offset += block_size
|
||||
tensor = torch.cat(tensors, dim=dim)
|
||||
tensor = tensor.to(device=self.device)
|
||||
|
||||
weight = torch.cat(weights, dim=1)
|
||||
weight = weight.to(device=self.device)
|
||||
return weight
|
||||
# Avoid casting quantizer dtypes.
|
||||
if tensor.dtype not in [torch.int16, torch.int32, torch.int64]:
|
||||
tensor = tensor.to(dtype=self.dtype)
|
||||
|
||||
return tensor
|
||||
|
||||
def get_weights_col_packed_qkv(
|
||||
self,
|
||||
|
@ -185,7 +213,9 @@ class Weights:
|
|||
from text_generation_server.layers.gptq import GPTQWeight
|
||||
|
||||
try:
|
||||
qweight = self._get_qweight(f"{prefix}.qweight", block_sizes)
|
||||
qweight = self.get_packed_sharded(
|
||||
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{quantize}` weight, make sure the model is already quantized."
|
||||
|
@ -193,8 +223,12 @@ class Weights:
|
|||
|
||||
gptq_params = self._get_gptq_params()
|
||||
|
||||
qzeros = self._get_qweight(f"{prefix}.qzeros", block_sizes)
|
||||
scales = self._get_qweight(f"{prefix}.scales", block_sizes)
|
||||
qzeros = self.get_packed_sharded(
|
||||
f"{prefix}.qzeros", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
scales = self.get_packed_sharded(
|
||||
f"{prefix}.scales", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
scales = scales.to(dtype=self.dtype)
|
||||
|
||||
if quantize == "gptq" and gptq_params.quant_method == "gptq":
|
||||
|
@ -237,13 +271,17 @@ class Weights:
|
|||
if quant_method == "gptq":
|
||||
gptq_params = self._get_gptq_params()
|
||||
try:
|
||||
qweight = self._get_qweight(f"{prefix}.qweight", block_sizes)
|
||||
qweight = self.get_packed_sharded(
|
||||
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
|
||||
)
|
||||
|
||||
scales = self._get_qweight(f"{prefix}.scales", block_sizes)
|
||||
scales = self.get_packed_sharded(
|
||||
f"{prefix}.scales", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
g_idx = self.get_tensor(f"{prefix}.g_idx")
|
||||
weight = repack_gptq_for_marlin(
|
||||
qweight=qweight,
|
||||
|
@ -257,34 +295,17 @@ class Weights:
|
|||
)
|
||||
|
||||
else:
|
||||
B = self._get_qweight(f"{prefix}.B", block_sizes)
|
||||
s = self._get_qweight(f"{prefix}.s", block_sizes)
|
||||
B = self.get_packed_sharded(
|
||||
f"{prefix}.B", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
s = self.get_packed_sharded(
|
||||
f"{prefix}.s", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
weight = MarlinWeight(B=B, s=s)
|
||||
else:
|
||||
slice_ = self._get_slice(f"{prefix}.weight")
|
||||
total_size = slice_.get_shape()[0]
|
||||
block_sizes = _blocks_to_block_sizes(
|
||||
total_size=total_size, blocks=block_sizes
|
||||
weight = self.get_packed_sharded(
|
||||
f"{prefix}.weight", dim=0, block_sizes=block_sizes
|
||||
)
|
||||
|
||||
world_size = self.process_group.size()
|
||||
rank = self.process_group.rank()
|
||||
|
||||
tensors = []
|
||||
block_offset = 0
|
||||
for block_size in block_sizes:
|
||||
assert (
|
||||
block_size % world_size == 0
|
||||
), f"Prepacked weights cannot be sharded across {world_size} shards"
|
||||
shard_block_size = block_size // world_size
|
||||
start = rank * shard_block_size
|
||||
stop = (rank + 1) * shard_block_size
|
||||
tensor = slice_[block_offset + start : block_offset + stop]
|
||||
tensors.append(tensor)
|
||||
block_offset += block_size
|
||||
weight = torch.cat(tensors, dim=0)
|
||||
weight = weight.to(device=self.device)
|
||||
weight = weight.to(dtype=self.dtype)
|
||||
return weight
|
||||
|
||||
def get_weights_col(self, prefix: str, quantize: str):
|
||||
|
|
Loading…
Reference in New Issue