# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
This commit is contained in:
Nicolas Patry 2024-04-23 23:04:44 +02:00 committed by GitHub
parent 986b4044d1
commit bfddfa5955
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
19 changed files with 28332 additions and 19992 deletions

View File

@ -1,5 +1,6 @@
## Speculation ## Speculation
Speculative decoding, assisted generation, Medusa, and others are a few different names for the same idea. Speculative decoding, assisted generation, Medusa, and others are a few different names for the same idea.
The idea is to generate tokens *before* the large model actually runs, and only *check* if those tokens where valid. The idea is to generate tokens *before* the large model actually runs, and only *check* if those tokens where valid.

View File

@ -293,6 +293,7 @@ def launcher(event_loop):
dtype: Optional[str] = None, dtype: Optional[str] = None,
revision: Optional[str] = None, revision: Optional[str] = None,
max_input_length: Optional[int] = None, max_input_length: Optional[int] = None,
max_batch_prefill_tokens: Optional[int] = None,
max_total_tokens: Optional[int] = None, max_total_tokens: Optional[int] = None,
): ):
port = random.randint(8000, 10_000) port = random.randint(8000, 10_000)
@ -334,6 +335,9 @@ def launcher(event_loop):
if max_input_length: if max_input_length:
args.append("--max-input-length") args.append("--max-input-length")
args.append(str(max_input_length)) args.append(str(max_input_length))
if max_batch_prefill_tokens:
args.append("--max-batch-prefill-tokens")
args.append(str(max_batch_prefill_tokens))
if max_total_tokens: if max_total_tokens:
args.append("--max-total-tokens") args.append("--max-total-tokens")
args.append(str(max_total_tokens)) args.append(str(max_total_tokens))
@ -371,6 +375,7 @@ def launcher(event_loop):
dtype: Optional[str] = None, dtype: Optional[str] = None,
revision: Optional[str] = None, revision: Optional[str] = None,
max_input_length: Optional[int] = None, max_input_length: Optional[int] = None,
max_batch_prefill_tokens: Optional[int] = None,
max_total_tokens: Optional[int] = None, max_total_tokens: Optional[int] = None,
): ):
port = random.randint(8000, 10_000) port = random.randint(8000, 10_000)
@ -395,6 +400,9 @@ def launcher(event_loop):
if max_input_length: if max_input_length:
args.append("--max-input-length") args.append("--max-input-length")
args.append(str(max_input_length)) args.append(str(max_input_length))
if max_batch_prefill_tokens:
args.append("--max-batch-prefill-tokens")
args.append(str(max_batch_prefill_tokens))
if max_total_tokens: if max_total_tokens:
args.append("--max-total-tokens") args.append("--max-total-tokens")
args.append(str(max_total_tokens)) args.append(str(max_total_tokens))

View File

@ -0,0 +1,89 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 1,
"logprob": null,
"text": "<s>"
},
{
"id": 3735,
"logprob": -8.5625,
"text": "Test"
},
{
"id": 2159,
"logprob": -10.78125,
"text": "request"
}
],
"seed": 0,
"tokens": [
{
"id": 288,
"logprob": -0.2854004,
"special": false,
"text": "ing"
},
{
"id": 264,
"logprob": -0.37573242,
"special": false,
"text": " a"
},
{
"id": 633,
"logprob": -0.09301758,
"special": false,
"text": " new"
},
{
"id": 4480,
"logprob": -0.3322754,
"special": false,
"text": " feature"
},
{
"id": 297,
"logprob": -0.8510742,
"special": false,
"text": " in"
},
{
"id": 272,
"logprob": -0.13464355,
"special": false,
"text": " the"
},
{
"id": 2039,
"logprob": 0.0,
"special": false,
"text": " game"
},
{
"id": 28723,
"logprob": -0.89990234,
"special": false,
"text": "."
},
{
"id": 13,
"logprob": 0.0,
"special": false,
"text": "\n"
},
{
"id": 13,
"logprob": 0.0,
"special": false,
"text": "\n"
}
],
"top_tokens": null
},
"generated_text": "Test requesting a new feature in the game.\n\n"
}

View File

@ -0,0 +1,73 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [],
"seed": null,
"tokens": [
{
"id": 330,
"logprob": -0.13000488,
"special": false,
"text": " A"
},
{
"id": 13088,
"logprob": -0.6713867,
"special": false,
"text": " chicken"
},
{
"id": 349,
"logprob": -0.2980957,
"special": false,
"text": " is"
},
{
"id": 6398,
"logprob": -0.060638428,
"special": false,
"text": " sitting"
},
{
"id": 356,
"logprob": -0.27319336,
"special": false,
"text": " on"
},
{
"id": 264,
"logprob": -0.140625,
"special": false,
"text": " a"
},
{
"id": 17972,
"logprob": -0.040405273,
"special": false,
"text": " pile"
},
{
"id": 302,
"logprob": -0.0002708435,
"special": false,
"text": " of"
},
{
"id": 2445,
"logprob": -0.095336914,
"special": false,
"text": " money"
},
{
"id": 28723,
"logprob": -0.0068359375,
"special": false,
"text": "."
}
],
"top_tokens": null
},
"generated_text": " A chicken is sitting on a pile of money."
}

View File

@ -0,0 +1,81 @@
import pytest
import base64
# TODO fix the server parsser to count inline image tokens correctly
def get_chicken():
with open("integration-tests/images/chicken_on_money.png", "rb") as image_file:
encoded_string = base64.b64encode(image_file.read())
return f"data:image/png;base64,{encoded_string.decode('utf-8')}"
@pytest.fixture(scope="module")
def flash_idefics2_next_handle(launcher):
with launcher(
"HuggingFaceM4/idefics2-8b",
) as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_idefics2_next(flash_idefics2_next_handle):
await flash_idefics2_next_handle.health(300)
return flash_idefics2_next_handle.client
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_idefics2_next_simple(flash_idefics2_next, response_snapshot):
chicken = get_chicken()
response = await flash_idefics2_next.generate(
f"User:![]({chicken})Write me a short story<end_of_utterance> \nAssistant:",
max_new_tokens=10,
)
assert (
response.generated_text == " A chicken is sitting on a pile of money."
), f"{repr(response.generated_text)}"
assert response.details.generated_tokens == 10
assert response == response_snapshot
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_idefics2_next_all_params(flash_idefics2_next, response_snapshot):
response = await flash_idefics2_next.generate(
"Test request",
max_new_tokens=10,
repetition_penalty=1.2,
return_full_text=True,
stop_sequences=["test"],
temperature=0.5,
top_p=0.9,
top_k=10,
truncate=5,
typical_p=0.9,
watermark=True,
decoder_input_details=True,
seed=0,
)
assert response.details.generated_tokens == 10
assert response == response_snapshot
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_idefics2_next_load(
flash_idefics2_next, generate_load, response_snapshot
):
chicken = get_chicken()
responses = await generate_load(
flash_idefics2_next,
f"User:![]({chicken})Write me a short story<end_of_utterance> \nAssistant:",
max_new_tokens=10,
n=4,
)
generated_texts = [r.generated_text for r in responses]
assert generated_texts[0] == " A chicken is sitting on a pile of money."
assert len(generated_texts) == 4
assert all([r.generated_text == generated_texts[0] for r in responses])
assert responses == response_snapshot

View File

@ -114,8 +114,12 @@ impl Client {
let truncate = min(max_input_length, max_prefill_tokens - n_tokens); let truncate = min(max_input_length, max_prefill_tokens - n_tokens);
let mut inputs = String::new(); let mut inputs = String::new();
inputs.push_str("![](");
inputs.push_str(&"_test ".to_string().repeat(max_input_length as usize)); inputs.push_str(&"_test ".to_string().repeat(max_input_length as usize));
if n_tokens == 0 {
// 1 request is enough to test vision heads.
// Sending images on other queries messes up easily with truncation.
inputs.push_str("![]()");
}
requests.push(Request { requests.push(Request {
id: 0, id: 0,

View File

@ -57,6 +57,31 @@ fn select_best_resolution(
best_fit.unwrap_or((original_height, original_width)) best_fit.unwrap_or((original_height, original_width))
} }
fn get_unpadded_features(
height: usize,
width: usize,
npatches: usize,
num_patch_height: usize,
num_patch_width: usize,
) -> (usize, usize) {
let current_height = npatches * num_patch_height;
let current_width = npatches * num_patch_width;
let aspect_ratio: f64 = width as f64 / height as f64;
let current_aspect_ratio: f64 = current_width as f64 / current_height as f64;
let (current_height, current_width) = if aspect_ratio > current_aspect_ratio {
let new_height = (height * current_width) / width;
(new_height, current_width)
} else {
let new_width = (width * current_height) / height;
(current_height, new_width)
};
let unpadded_features = current_height * current_width;
let newline_features = current_height;
(unpadded_features, newline_features)
}
impl LlavaNext { impl LlavaNext {
pub fn get_number_of_features(&self, height: usize, width: usize) -> usize { pub fn get_number_of_features(&self, height: usize, width: usize) -> usize {
let image_size = self.vision_config.image_size; let image_size = self.vision_config.image_size;
@ -65,11 +90,9 @@ impl LlavaNext {
let npatches = image_size / patch_size; let npatches = image_size / patch_size;
let (num_patch_height, num_patch_width) = let (num_patch_height, num_patch_width) =
get_anyres_image_grid_shape(height, width, &self.image_grid_pinpoints, image_size); get_anyres_image_grid_shape(height, width, &self.image_grid_pinpoints, image_size);
// Ceil
let height_of_patch = (height * npatches + width - 1) / width; let (unpadded_features, newline_features) =
let unpadded_features = npatches * height_of_patch * num_patch_height * num_patch_width; get_unpadded_features(height, width, npatches, num_patch_height, num_patch_width);
// They are only added after width
let newline_features = height_of_patch * num_patch_width;
// The base patch covers the entire image // The base patch covers the entire image
let base_features = npatches.pow(2); let base_features = npatches.pow(2);
unpadded_features + newline_features + base_features unpadded_features + newline_features + base_features
@ -84,6 +107,17 @@ pub struct ClipVisionModel {
patch_size: usize, patch_size: usize,
} }
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(tag = "model_type")]
#[serde(rename_all = "snake_case")]
pub struct Idefics2 {}
impl Idefics2 {
pub fn get_number_of_features(&self, _height: usize, _width: usize) -> usize {
320
}
}
#[derive(Clone, Debug, Serialize, Deserialize)] #[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(tag = "model_type")] #[serde(tag = "model_type")]
#[serde(rename_all = "snake_case")] #[serde(rename_all = "snake_case")]
@ -92,6 +126,7 @@ pub enum Config {
ClipVisionModel(ClipVisionModel), ClipVisionModel(ClipVisionModel),
Mistral, Mistral,
Idefics, Idefics,
Idefics2(Idefics2),
Ssm, Ssm,
GptBigcode, GptBigcode,
Santacoder, Santacoder,
@ -146,13 +181,17 @@ mod test {
], ],
}; };
let slots = config.get_number_of_features(20, 20);
assert_eq!(slots, 1176);
let slots = config.get_number_of_features(640, 640); let slots = config.get_number_of_features(640, 640);
assert_eq!(slots, 2928); assert_eq!(slots, 2928);
let slots = config.get_number_of_features(480, 640); let slots = config.get_number_of_features(480, 640);
assert_eq!(slots, 2340); assert_eq!(slots, 2340);
let slots = config.get_number_of_features(899, 1024); let slots = config.get_number_of_features(899, 1024);
assert_eq!(slots, 2732); assert_eq!(slots, 2634);
let slots = config.get_number_of_features(1024, 899); let slots = config.get_number_of_features(1024, 899);
assert_eq!(slots, 3320); assert_eq!(slots, 2640);
let slots = config.get_number_of_features(1067, 1600);
assert_eq!(slots, 2144);
} }
} }

View File

@ -540,7 +540,57 @@ fn prepare_input(
inputs = modified_inputs; inputs = modified_inputs;
tokenizer_query tokenizer_query
} }
Some(Config::Idefics) => RE.replace_all(&inputs, "<image>").into(), Some(Config::Idefics2(config)) => {
let mut modified_inputs = String::with_capacity(inputs.len());
let mut tokenizer_query = String::with_capacity(inputs.len());
let mut start = 0;
for chunk in RE.find_iter(&inputs) {
let chunk_start = chunk.start();
let chunk_end = chunk.end();
if chunk_start != start {
modified_inputs.push_str(&inputs[start..chunk_start]);
tokenizer_query.push_str(&inputs[start..chunk_start]);
}
let (image_uri, height, width) = fetch_image(&inputs[chunk_start..chunk_end])?;
let slots = config.get_number_of_features(height, width);
tokenizer_query.push_str("<fake_token_around_image>");
tokenizer_query.push_str(&"<image>".repeat(slots));
tokenizer_query.push_str("<fake_token_around_image>");
modified_inputs.push_str(&image_uri);
start = chunk_end;
}
if start != inputs.len() - 1 {
modified_inputs.push_str(&inputs[start..]);
tokenizer_query.push_str(&inputs[start..]);
}
inputs = modified_inputs;
tokenizer_query
}
Some(Config::Idefics) => {
let mut modified_inputs = String::with_capacity(inputs.len());
let mut tokenizer_query = String::with_capacity(inputs.len());
let mut start = 0;
for chunk in RE.find_iter(&inputs) {
let chunk_start = chunk.start();
let chunk_end = chunk.end();
if chunk_start != start {
modified_inputs.push_str(&inputs[start..chunk_start]);
tokenizer_query.push_str(&inputs[start..chunk_start]);
}
let (image_uri, _height, _width) = fetch_image(&inputs[chunk_start..chunk_end])?;
let slots = 1;
tokenizer_query.push_str(&"<image>".repeat(slots));
modified_inputs.push_str(&image_uri);
start = chunk_end;
}
if start != inputs.len() - 1 {
modified_inputs.push_str(&inputs[start..]);
tokenizer_query.push_str(&inputs[start..]);
}
inputs = modified_inputs;
tokenizer_query
}
_ => inputs.clone(), _ => inputs.clone(),
}; };

View File

@ -68,6 +68,7 @@ try:
) )
from text_generation_server.models.idefics import IDEFICSSharded from text_generation_server.models.idefics import IDEFICSSharded
from text_generation_server.models.llava_next import LlavaNext from text_generation_server.models.llava_next import LlavaNext
from text_generation_server.models.idefics2 import Idefics2
from text_generation_server.models.flash_mistral import FlashMistral from text_generation_server.models.flash_mistral import FlashMistral
from text_generation_server.models.flash_mixtral import FlashMixtral from text_generation_server.models.flash_mixtral import FlashMixtral
from text_generation_server.models.flash_phi import FlashPhi from text_generation_server.models.flash_phi import FlashPhi
@ -579,6 +580,18 @@ def get_model(
) )
else: else:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics")) raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
if model_type == "idefics2":
if FLASH_ATTENTION:
return Idefics2(
model_id,
revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
else:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
if model_type == "llava_next": if model_type == "llava_next":
if FLASH_ATTENTION: if FLASH_ATTENTION:

View File

@ -409,23 +409,29 @@ class MistralModel(torch.nn.Module):
class FlashMistralForCausalLM(torch.nn.Module): class FlashMistralForCausalLM(torch.nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights, name=None):
if name is None:
name = "model"
super().__init__() super().__init__()
self.embed_tokens = TensorParallelEmbedding( self.embed_tokens = TensorParallelEmbedding(
prefix=( prefix=(
"model.embed_tokens" if not prefix else f"{prefix}.model.embed_tokens" f"{name}.embed_tokens"
if not prefix
else f"{prefix}.{name}.embed_tokens"
), ),
weights=weights, weights=weights,
) )
self.model = MistralModel( self.model = MistralModel(
prefix="model" if not prefix else f"{prefix}.model", prefix=name if not prefix else f"{prefix}.{name}",
config=config, config=config,
weights=weights, weights=weights,
) )
self.lm_head = SpeculativeHead.load( self.lm_head = SpeculativeHead.load(
config, config,
prefix="lm_head" if not prefix else f"{prefix}.lm_head", # TODO dirty hack for idefics2.
prefix=(
"lm_head" if not prefix or name != "model" else f"{prefix}.lm_head"
),
weights=weights, weights=weights,
) )
self.max_past = config.sliding_window self.max_past = config.sliding_window

View File

@ -0,0 +1,829 @@
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Idefics2 model."""
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
import math
from transformers.activations import ACT2FN
from transformers.image_processing_utils import select_best_resolution
from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
load_vision_model,
)
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from text_generation_server.utils.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Idefics2VisionEmbeddings(nn.Module):
"""
This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable
resolution.
The modifications are adapted from [Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304)
which allows treating images in their native aspect ratio and without the need to resize them to the same
fixed size. In particular, we start from the original pre-trained SigLIP model
(which uses images of fixed-size square images) and adapt it by training on images of variable resolutions.
"""
def __init__(self, prefix, config, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.patch_embedding.weight = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False
)
self.patch_embedding.bias = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.bias"), requires_grad=False
)
self.num_patches_per_side = self.image_size // self.patch_size
self.num_patches = self.num_patches_per_side**2
self.num_positions = self.num_patches
self.position_embedding = TensorParallelEmbedding(
prefix=f"{prefix}.position_embedding", weights=weights
)
def forward(
self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor
) -> torch.Tensor:
batch_size, _, max_im_h, max_im_w = pixel_values.shape
patch_embeds = self.patch_embedding(pixel_values)
embeddings = patch_embeds.flatten(2).transpose(1, 2)
max_nb_patches_h, max_nb_patches_w = (
max_im_h // self.patch_size,
max_im_w // self.patch_size,
)
boundaries = torch.arange(
1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side
)
position_ids = torch.full(
size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0
)
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
nb_patches_h = p_attn_mask[:, 0].sum()
nb_patches_w = p_attn_mask[0].sum()
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
bucket_coords_h = torch.bucketize(
fractional_coords_h, boundaries, right=True
)
bucket_coords_w = torch.bucketize(
fractional_coords_w, boundaries, right=True
)
pos_ids = (
bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w
).flatten()
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
position_ids = position_ids.to(self.position_embedding.weight.device)
embeddings = embeddings + self.position_embedding(position_ids)
return embeddings
class Idefics2VisionAttention(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_size = self.embed_dim // self.num_heads
if self.head_size * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_size**-0.5
self.dropout = config.attention_dropout
self.num_heads = self.num_heads // weights.process_group.size()
self.embed_dim = self.embed_dim // weights.process_group.size()
self.qkv = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=True,
)
self.out_proj = TensorParallelRowLinear.load(
config=config, prefix=f"{prefix}.out_proj", weights=weights, bias=True
)
self.is_causal = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, q_len, _ = hidden_states.size()
qkv = self.qkv(hidden_states)
query_states, key_states, value_states = qkv.split(
[
self.head_size * self.num_heads,
self.head_size * self.num_heads,
self.head_size * self.num_heads,
],
dim=2,
)
query_states = query_states.view(
batch_size, q_len, self.num_heads, self.head_size
).transpose(1, 2)
key_states = key_states.view(
batch_size, q_len, self.num_heads, self.head_size
).transpose(1, 2)
value_states = value_states.view(
batch_size, q_len, self.num_heads, self.head_size
).transpose(1, 2)
k_v_seq_len = key_states.shape[-2]
attn_weights = (
torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
)
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
raise ValueError(
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_size):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_size)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output
class Idefics2VisionMLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = TensorParallelColumnLinear.load(
prefix=f"{prefix}.fc1", config=config, weights=weights, bias=True
)
self.fc2 = TensorParallelRowLinear.load(
prefix=f"{prefix}.fc2", config=config, weights=weights, bias=True
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class Idefics2EncoderLayer(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Idefics2VisionAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.layer_norm1 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm1", eps=config.layer_norm_eps, weights=weights
)
self.layer_norm2 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm2", eps=config.layer_norm_eps, weights=weights
)
self.mlp = Idefics2VisionMLP(
prefix=f"{prefix}.mlp", config=config, weights=weights
)
# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoderLayer.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Idefics2Encoder(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[
Idefics2EncoderLayer(
prefix=f"{prefix}.layers.{i}", config=config, weights=weights
)
for i in range(config.num_hidden_layers)
]
)
# Ignore copy
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
):
hidden_states = inputs_embeds
for encoder_layer in self.layers:
hidden_states = encoder_layer(
hidden_states,
attention_mask,
)
return hidden_states
class Idefics2VisionTransformer(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embeddings = Idefics2VisionEmbeddings(
prefix=f"{prefix}.embeddings", config=config, weights=weights
)
self.encoder = Idefics2Encoder(
prefix=f"{prefix}.encoder", config=config, weights=weights
)
self.post_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.post_layernorm",
weights=weights,
eps=config.layer_norm_eps,
)
def forward(
self,
pixel_values,
patch_attention_mask: Optional[torch.BoolTensor] = None,
):
batch_size = pixel_values.size(0)
if patch_attention_mask is None:
patch_size = self.config.patch_size
patch_attention_mask = torch.ones(
(
batch_size,
pixel_values.size(2) // patch_size,
pixel_values.size(3) // patch_size,
)
)
patch_attention_mask = patch_attention_mask.to(
dtype=torch.bool, device=pixel_values.device
)
hidden_states = self.embeddings(
pixel_values=pixel_values, patch_attention_mask=patch_attention_mask
)
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
# The call to `_upad_input` in `_flash_attention_forward` is expensive
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
if not torch.any(~patch_attention_mask):
patch_attention_mask = None
else:
patch_attention_mask = _prepare_4d_attention_mask(
patch_attention_mask, hidden_states.dtype
)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=patch_attention_mask,
)
last_hidden_state = encoder_outputs
last_hidden_state = self.post_layernorm(last_hidden_state)
return last_hidden_state
class Idefics2MLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
act = config.text_config.hidden_act
self.act = (
ACT2FN[act]
if "gelu" not in act
else lambda x: torch.nn.functional.gelu(
x,
approximate=(
"tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none"
),
)
)
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights,
dim=0,
bias=False,
)
self.down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=False,
)
def forward(self, hidden_states):
start_shape = hidden_states.shape[:-1]
gate_up_states = self.gate_up_proj(hidden_states)
intermediate_size = gate_up_states.shape[-1] // 2
gate_up_states = gate_up_states.view(-1, 2, intermediate_size)
return self.down_proj(
self.act(gate_up_states[:, 0]) * gate_up_states[:, 1]
).view(*start_shape, -1)
class Idefics2RMSNorm(nn.Module):
def __init__(self, prefix, weights, eps):
"""
Idefics2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(
weights.get_tensor(f"{prefix}.weight"), requires_grad=False
)
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Idefics2PerceiverAttention(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.layer_idx = None
self.hidden_size = config.text_config.hidden_size
self.num_heads = config.perceiver_config.resampler_n_heads
self.head_size = config.perceiver_config.resampler_head_dim
self.num_key_value_heads = config.perceiver_config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.attention_dropout = config.perceiver_config.attention_dropout
self.num_heads = self.num_heads // weights.process_group.size()
self.num_key_value_heads = (
self.num_key_value_heads // weights.process_group.size()
)
self.q_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.q_proj",
weights=weights,
bias=False,
)
self.kv = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=False,
)
self.o_proj = TensorParallelRowLinear.load(
config=config, prefix=f"{prefix}.o_proj", weights=weights, bias=False
)
self.is_causal = False
def forward(
self,
latents: torch.Tensor,
context: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = latents.size()
kv_seq_len = q_len + context.size()[1]
hidden_states = torch.concat([context, latents], dim=-2)
query_states = self.q_proj(latents)
kv = self.kv(hidden_states)
key_states, value_states = kv.split(
[
self.head_size * self.num_key_value_heads,
self.head_size * self.num_key_value_heads,
],
dim=2,
)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_size
).transpose(1, 2)
key_states = key_states.view(
bsz, kv_seq_len, self.num_key_value_heads, self.head_size
).transpose(1, 2)
value_states = value_states.view(
bsz, kv_seq_len, self.num_key_value_heads, self.head_size
).transpose(1, 2)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_size)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_size):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_size)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_size)
attn_output = self.o_proj(attn_output)
return attn_output
class Idefics2PerceiverLayer(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.hidden_size = config.text_config.hidden_size
self.n_latents = config.perceiver_config.resampler_n_latents
self.depth = config.perceiver_config.resampler_depth
self.rms_norm_eps = config.text_config.rms_norm_eps
self.input_latents_norm = Idefics2RMSNorm(
prefix=f"{prefix}.input_latents_norm",
weights=weights,
eps=self.rms_norm_eps,
)
self.input_context_norm = Idefics2RMSNorm(
prefix=f"{prefix}.input_context_norm",
weights=weights,
eps=self.rms_norm_eps,
)
self.self_attn = Idefics2PerceiverAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.post_attention_layernorm = Idefics2RMSNorm(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=self.rms_norm_eps,
)
self.mlp = Idefics2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
def forward(
self,
latents: torch.Tensor,
context: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
):
"""
Args:
latents (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
context (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
"""
residual = latents
latents = self.input_latents_norm(latents)
context = self.input_context_norm(context)
latents = self.self_attn(
latents=latents,
context=context,
attention_mask=attention_mask,
)
latents = residual + latents
residual = latents
latents = self.post_attention_layernorm(latents)
latents = self.mlp(latents)
latents = residual + latents
return latents
class Idefics2PerceiverResampler(nn.Module):
def __init__(self, prefix, config, weights) -> None:
super().__init__()
self.hidden_size = config.text_config.hidden_size
self.hidden_act = config.perceiver_config.hidden_act
self.n_latents = config.perceiver_config.resampler_n_latents
self.depth = config.perceiver_config.resampler_depth
self.rms_norm_eps = config.text_config.rms_norm_eps
# Create Latents for Perceiver
self.latents = weights.get_tensor(f"{prefix}.latents")
# Create Transformer Blocks
self.layers = nn.ModuleList(
[
Idefics2PerceiverLayer(
prefix=f"{prefix}.layers.{idx}", config=config, weights=weights
)
for idx in range(self.depth)
]
)
self.norm = Idefics2RMSNorm(
prefix=f"{prefix}.norm",
weights=weights,
eps=config.text_config.rms_norm_eps,
)
def forward(
self,
context: torch.Tensor,
attention_mask,
) -> torch.Tensor:
# seq embed -> bsz seq embed
latents = self.latents.unsqueeze(0).expand(
(context.shape[0], *self.latents.size())
)
latent_attention_mask = torch.ones(
(attention_mask.size(0), latents.size(1)),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
attention_mask = torch.cat([attention_mask, latent_attention_mask], dim=-1)
attention_mask = _prepare_4d_attention_mask(
attention_mask, latents.dtype, tgt_len=self.n_latents
)
compressed_context = latents
for perceiver_layer in self.layers:
compressed_context = perceiver_layer(
compressed_context,
context,
attention_mask=attention_mask,
)
compressed_context = self.norm(compressed_context)
return compressed_context
class Idefics2Connector(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.modality_projection = Idefics2MLP(
prefix=f"{prefix}.modality_projection", config=config, weights=weights
)
self.perceiver_resampler = Idefics2PerceiverResampler(
prefix=f"{prefix}.perceiver_resampler", config=config, weights=weights
)
def forward(self, image_hidden_states, attention_mask):
image_hidden_states = self.modality_projection(image_hidden_states)
image_hidden_states = self.perceiver_resampler(
context=image_hidden_states, attention_mask=attention_mask
)
return image_hidden_states
class Idefics2ForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
config.vision_config.quantize = config.quantize
config.vision_config.use_medusa = config.use_medusa
config.text_config.quantize = config.quantize
config.text_config.use_medusa = config.use_medusa
vision_config = config.vision_config
self.text_model = load_text_model(
prefix="model" if not prefix else f"{prefix}.model",
config=config.text_config,
weights=weights,
name="text_model",
)
self.dtype = weights.dtype
self.vision_model = Idefics2VisionTransformer(
prefix=f"{prefix}.model.vision_model" if prefix else "model.vision_model",
config=vision_config,
weights=weights,
)
self.connector = Idefics2Connector(
prefix=f"{prefix}.model.connector" if prefix else "model.connector",
config=config,
weights=weights,
)
self.config = config
self.image_seq_len = config.perceiver_config.resampler_n_latents
self.image_token_id = config.image_token_id
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
def _merge_input_ids_with_image_features(
self,
input_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
image_features: torch.Tensor,
):
"""In place merges in vision_embeddings with inputs_embeds."""
# mask = input_ids == self.config.image_token_index
mask = input_ids == self.config.image_token_id
# Let's pray we have enabled enough slots !
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
pixel_attention_mask: Optional[torch.BoolTensor] = None,
# Unused here
image_sizes: Optional[torch.Tensor] = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if pixel_values is not None:
batch_size, num_images, num_channels, height, width = pixel_values.shape
all_states = []
all_pixel_values = pixel_values
all_pixel_mask = pixel_attention_mask
for i in range(batch_size):
pixel_values = all_pixel_values.to(
dtype=self.dtype
) # fp16 compatibility
pixel_values = pixel_values[i : i + 1]
pixel_values = pixel_values.view(num_images, *pixel_values.shape[2:])
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(
dim=(-1, -2, -3)
) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask
if pixel_attention_mask is None:
pixel_attention_mask = torch.ones(
size=(
pixel_values.size(0),
pixel_values.size(2),
pixel_values.size(3),
),
dtype=torch.bool,
device=pixel_values.device,
)
else:
# Remove padding images from the mask/pP p
pixel_attention_mask = all_pixel_mask[i : i + 1]
pixel_attention_mask = pixel_attention_mask.view(
1 * num_images, *pixel_attention_mask.shape[2:]
)
pixel_attention_mask = pixel_attention_mask[
real_images_inds
].contiguous()
patch_size = self.config.vision_config.patch_size
patches_subgrid = pixel_attention_mask.unfold(
dimension=1, size=patch_size, step=patch_size
)
patches_subgrid = patches_subgrid.unfold(
dimension=2, size=patch_size, step=patch_size
)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
)
# Modality projection & resampling
image_hidden_states = self.connector(
image_hidden_states,
attention_mask=patch_attention_mask.view(pixel_values.size(0), -1),
)
all_states.append(image_hidden_states)
image_hidden_states = torch.stack(all_states, dim=0)
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, image_hidden_states
)
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
true_max_s=max_s,
prefill_cache_indices=None,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.text_model.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -23,6 +23,10 @@ from torch import nn
from transformers.activations import ACT2FN from transformers.activations import ACT2FN
from transformers.image_processing_utils import select_best_resolution from transformers.image_processing_utils import select_best_resolution
from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
load_vision_model,
)
from text_generation_server.utils.layers import ( from text_generation_server.utils.layers import (
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelRowLinear, TensorParallelRowLinear,
@ -105,36 +109,6 @@ class LlavaNextMultiModalProjector(nn.Module):
return hidden_states return hidden_states
def load_vision_model(prefix, config, weights):
if config.model_type == "clip_vision_model":
from text_generation_server.models.custom_modeling.clip import (
CLIPVisionTransformer,
)
return CLIPVisionTransformer(
prefix=f"{prefix}.vision_model", config=config, weights=weights
)
else:
raise RuntimeError(f"Unsupported model type {config.model_type}")
def load_text_model(prefix, config, weights):
if config.model_type == "llama":
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
)
return FlashLlamaForCausalLM(prefix, config, weights)
elif config.model_type == "mistral":
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
FlashMistralForCausalLM,
)
return FlashMistralForCausalLM(prefix, config, weights)
else:
raise RuntimeError(f"Unsupported model type {config.model_type}")
class LlavaNextForConditionalGeneration(nn.Module): class LlavaNextForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
@ -180,7 +154,12 @@ class LlavaNextForConditionalGeneration(nn.Module):
"""In place merges in vision_embeddings with inputs_embeds.""" """In place merges in vision_embeddings with inputs_embeds."""
mask = input_ids == self.config.image_token_index mask = input_ids == self.config.image_token_index
# Let's pray we have enabled enough slots ! # Let's pray we have enabled enough slots !
try:
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1]) inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
except Exception as e:
raise RuntimeError(
f"Cannot fill images right now. If error happens at warmup, make sure you have enough `--max-input-tokens` to handle images. If error happens at regular runtime, please fill in an issue: {e}"
)
return inputs_embeds return inputs_embeds
def forward( def forward(
@ -196,6 +175,8 @@ class LlavaNextForConditionalGeneration(nn.Module):
prefill_cache_indices: Optional[torch.Tensor], prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor] = None, lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None, pixel_values: torch.FloatTensor = None,
# Unused for this model
pixel_attention_mask=None,
image_sizes: Optional[torch.LongTensor] = None, image_sizes: Optional[torch.LongTensor] = None,
): ):
inputs_embeds = self.language_model.embed_tokens(input_ids) inputs_embeds = self.language_model.embed_tokens(input_ids)

View File

@ -0,0 +1,28 @@
def load_text_model(prefix, config, weights, name=None):
if config.model_type == "llama":
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
)
return FlashLlamaForCausalLM(prefix, config, weights)
elif config.model_type == "mistral":
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
FlashMistralForCausalLM,
)
return FlashMistralForCausalLM(prefix, config, weights, name=name)
else:
raise RuntimeError(f"Unsupported model type {config.model_type}")
def load_vision_model(prefix, config, weights):
if config.model_type == "clip_vision_model":
from text_generation_server.models.custom_modeling.clip import (
CLIPVisionTransformer,
)
return CLIPVisionTransformer(
prefix=f"{prefix}.vision_model", config=config, weights=weights
)
else:
raise RuntimeError(f"Unsupported model type {config.model_type}")

View File

@ -511,6 +511,21 @@ class BaseFlashMistral(FlashCausalLM):
cuda_graph = self.cuda_graphs.get(padded_bs, None) cuda_graph = self.cuda_graphs.get(padded_bs, None)
if cu_seqlen_prefill is not None or cuda_graph is None: if cu_seqlen_prefill is not None or cuda_graph is None:
if cu_seqlen_prefill is None:
logits, speculative_logits = self.compiled_model(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
prefill_cache_indices=batch.prefill_cache_indices,
lm_head_indices=lm_head_indices,
)
else:
logits, speculative_logits = self.model.forward( logits, speculative_logits = self.model.forward(
input_ids=input_ids, input_ids=input_ids,
position_ids=position_ids, position_ids=position_ids,

View File

@ -0,0 +1,51 @@
import torch
from typing import Optional, Tuple
from transformers import (
AutoProcessor,
)
from text_generation_server.models.custom_modeling.idefics2 import (
Idefics2ForConditionalGeneration,
)
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
class Idefics2(VlmCausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.processor = AutoProcessor.from_pretrained(
model_id,
revision=revision,
trust_remote_code=trust_remote_code,
# XXX: Extremely important to cap resolution in order to limit
# VRAM usage.
size={"longest_edge": 448, "shortest_edge": 378},
)
super().__init__(
model_cls=Idefics2ForConditionalGeneration,
model_id=model_id,
revision=revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
def get_layer_config(self, model) -> Tuple[int, int, int]:
return (
len(model.text_model.model.layers),
model.text_model.model.num_key_value_heads,
model.text_model.model.head_size,
)
def max_past(self) -> Optional[int]:
return getattr(self.model.text_model, "max_past", None)

View File

@ -1,6 +1,6 @@
import torch import torch
from typing import Optional from typing import Optional, Tuple
from transformers import ( from transformers import (
AutoProcessor, AutoProcessor,
@ -34,3 +34,13 @@ class LlavaNext(VlmCausalLM):
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
def get_layer_config(self, model) -> Tuple[int, int, int]:
return (
len(model.language_model.model.layers),
model.language_model.model.num_key_value_heads,
model.language_model.model.head_size,
)
def max_past(self) -> Optional[int]:
return getattr(self.model.language_model, "max_past", None)

View File

@ -64,6 +64,46 @@ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
return height // patch_size, width // patch_size return height // patch_size, width // patch_size
def image_text_replacement(image_input, config, image_id) -> str:
if config.model_type == "idefics2":
# TODO technically depends on image splitting which is not implemented.
num_features = 320
return (
"<fake_token_around_image>"
+ "<image>" * num_features
+ "<fake_token_around_image>"
)
elif config.model_type == "llava_next":
height, width = image_input["image_sizes"][image_id]
num_features = get_number_of_features(height, width, config)
from loguru import logger
logger.info(f"Found {num_features} in image of resolution {height}x{width}")
return "<image>" * num_features
else:
raise RuntimeError(f"Unknown config {config.model_type} for multimodal")
def get_unpadded_features(
height: int, width: int, npatches: int, num_patch_height: int, num_patch_width: int
) -> Tuple[int, int]:
current_height = npatches * num_patch_height
current_width = npatches * num_patch_width
aspect_ratio: float = width / height
current_aspect_ratio: float = current_width / current_height
if aspect_ratio > current_aspect_ratio:
new_height = (height * current_width) // width
current_height = new_height
else:
new_width = (width * current_height) // height
current_width = new_width
unpadded_features = current_height * current_width
newline_features = current_height
return (unpadded_features, newline_features)
def get_number_of_features(height: int, width: int, config) -> int: def get_number_of_features(height: int, width: int, config) -> int:
# From config # From config
# Hardcoded for CLIP for now # Hardcoded for CLIP for now
@ -81,12 +121,9 @@ def get_number_of_features(height: int, width: int, config) -> int:
image_grid_pinpoints, image_grid_pinpoints,
image_size, image_size,
) )
unpadded_features, newline_features = get_unpadded_features(
height_of_patch = math.ceil(height / width * npatches) height, width, npatches, num_patch_height, num_patch_width
)
unpadded_features = npatches * height_of_patch * num_patch_height * num_patch_width
# They are only added after width
newline_features = height_of_patch * num_patch_width
# The base patch covers the entire image # The base patch covers the entire image
base_features = npatches**2 base_features = npatches**2
return unpadded_features + newline_features + base_features return unpadded_features + newline_features + base_features
@ -99,12 +136,9 @@ def load_data_uri(image_uri: str) -> Image.Image:
return image return image
# assert get_number_of_features(889, 1024) == 2634, f"{get_number_of_features(889, 1024)}"
# assert get_number_of_features(640, 640) == 2928
class VlmCausalLMBatch(FlashMistralBatch): class VlmCausalLMBatch(FlashMistralBatch):
pixel_values: Optional[List[torch.Tensor]] pixel_values: Optional[List[torch.Tensor]]
pixel_attention_mask: Optional[List[torch.Tensor]]
image_sizes: Optional[List[Tuple[int, int]]] image_sizes: Optional[List[Tuple[int, int]]]
@classmethod @classmethod
@ -112,6 +146,7 @@ class VlmCausalLMBatch(FlashMistralBatch):
def concatenate(cls, batches): def concatenate(cls, batches):
batch = super(VlmCausalLMBatch, cls).concatenate(batches) batch = super(VlmCausalLMBatch, cls).concatenate(batches)
batch.pixel_values = None batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None batch.image_sizes = None
return batch return batch
@ -119,6 +154,7 @@ class VlmCausalLMBatch(FlashMistralBatch):
def filter(self, request_ids: List[int]): def filter(self, request_ids: List[int]):
batch = super().filter(request_ids) batch = super().filter(request_ids)
batch.pixel_values = None batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None batch.image_sizes = None
return batch return batch
@ -130,6 +166,7 @@ class VlmCausalLMBatch(FlashMistralBatch):
for r in requests: for r in requests:
chunks = split(r.inputs) chunks = split(r.inputs)
full_text = "" full_text = ""
image_id = 0
for chunk in chunks: for chunk in chunks:
if chunk["type"] == "text": if chunk["type"] == "text":
full_text += chunk["content"] full_text += chunk["content"]
@ -147,9 +184,7 @@ class VlmCausalLMBatch(FlashMistralBatch):
"Cannot process input image not starting with data:" "Cannot process input image not starting with data:"
) )
image_input = processor.image_processor(image, return_tensors="pt") image_input = processor.image_processor(image, return_tensors="pt")
height, width = image_input["image_sizes"][0] full_text += image_text_replacement(image_input, config, image_id)
num_features = get_number_of_features(height, width, config)
full_text += "<image>" * num_features
image_inputs.append(image_input) image_inputs.append(image_input)
else: else:
raise RuntimeError(f"Invalid chunk type {chunk['type']}") raise RuntimeError(f"Invalid chunk type {chunk['type']}")
@ -161,12 +196,21 @@ class VlmCausalLMBatch(FlashMistralBatch):
batch_inputs, truncation=True, max_length=max_truncation batch_inputs, truncation=True, max_length=max_truncation
)["input_ids"] )["input_ids"]
if image_inputs: if image_inputs:
image_inputs = { image_input = image_inputs[0]
new_image_inputs = {
"pixel_values": torch.cat( "pixel_values": torch.cat(
[img["pixel_values"] for img in image_inputs], dim=0 [img["pixel_values"] for img in image_inputs], dim=0
), ),
"image_sizes": torch.cat([img["image_sizes"] for img in image_inputs]),
} }
if "pixel_attention_mask" in image_input:
new_image_inputs["pixel_attention_mask"] = torch.cat(
[img["pixel_attention_mask"] for img in image_inputs], dim=0
)
if "image_sizes" in image_input:
new_image_inputs["image_sizes"] = torch.cat(
[img["image_sizes"] for img in image_inputs], dim=0
)
image_inputs = new_image_inputs
else: else:
image_inputs = None image_inputs = None
return batch_tokenized_inputs, image_inputs return batch_tokenized_inputs, image_inputs
@ -187,9 +231,19 @@ class VlmCausalLMBatch(FlashMistralBatch):
batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device) batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
if image_inputs is not None: if image_inputs is not None:
batch.pixel_values = image_inputs["pixel_values"].to(device=device) batch.pixel_values = image_inputs["pixel_values"].to(device=device)
if "pixel_attention_mask" in image_inputs:
batch.pixel_attention_mask = image_inputs["pixel_attention_mask"].to(
device=device
)
else:
batch.pixel_attention_mask = None
if "image_sizes" in image_inputs:
batch.image_sizes = image_inputs["image_sizes"].to(device=device) batch.image_sizes = image_inputs["image_sizes"].to(device=device)
else:
batch.image_sizes = None
else: else:
batch.pixel_values = None batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None batch.image_sizes = None
return batch return batch
@ -199,16 +253,6 @@ class VlmCausalLM(BaseFlashMistral):
def batch_type(self) -> Type[VlmCausalLMBatch]: def batch_type(self) -> Type[VlmCausalLMBatch]:
return VlmCausalLMBatch return VlmCausalLMBatch
def get_layer_config(self, model) -> Tuple[int, int, int]:
return (
len(model.language_model.model.layers),
model.language_model.model.num_key_value_heads,
model.language_model.model.head_size,
)
def max_past(self) -> Optional[int]:
return getattr(self.model.language_model, "max_past", None)
def forward( def forward(
self, batch: VlmCausalLMBatch self, batch: VlmCausalLMBatch
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
@ -270,17 +314,14 @@ class VlmCausalLM(BaseFlashMistral):
max_s = min(self.max_past(), max_s) max_s = min(self.max_past(), max_s)
bs = input_ids.shape[0] bs = input_ids.shape[0]
padded_bs = bs
if bs == 3:
padded_bs = 4
elif 3 < bs <= 8:
padded_bs = 8
elif bs > 8:
padded_bs = (bs + 7) // 8 * 8
# Try to find an associated cuda graph # Try to find an associated cuda graph
cuda_graph = self.cuda_graphs.get(padded_bs, None) bs = input_ids.shape[0]
sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs])
if sorted_padded_bs:
# Get associated cuda graph
cuda_graph = self.cuda_graphs[sorted_padded_bs[0]]
else:
cuda_graph = None
if cu_seqlen_prefill is not None or cuda_graph is None: if cu_seqlen_prefill is not None or cuda_graph is None:
logits, speculative_logits = self.model.forward( logits, speculative_logits = self.model.forward(
input_ids=input_ids, input_ids=input_ids,
@ -294,12 +335,15 @@ class VlmCausalLM(BaseFlashMistral):
prefill_cache_indices=batch.prefill_cache_indices, prefill_cache_indices=batch.prefill_cache_indices,
lm_head_indices=lm_head_indices, lm_head_indices=lm_head_indices,
pixel_values=batch.pixel_values, pixel_values=batch.pixel_values,
pixel_attention_mask=batch.pixel_attention_mask,
image_sizes=batch.image_sizes, image_sizes=batch.image_sizes,
) )
if batch.prefill_cache_indices is not None: if batch.prefill_cache_indices is not None:
batch.prefill_cache_indices = None batch.prefill_cache_indices = None
if batch.pixel_values is not None: if batch.pixel_values is not None:
batch.pixel_values = None batch.pixel_values = None
if batch.pixel_attention_mask is not None:
batch.pixel_attention_mask = None
if batch.image_sizes is not None: if batch.image_sizes is not None:
batch.image_sizes = None batch.image_sizes = None
return logits, speculative_logits return logits, speculative_logits