feat(server): flash santacoder (#153)
This commit is contained in:
parent
fef1a1c381
commit
c0aeb32583
|
@ -8,6 +8,7 @@ from typing import Optional
|
|||
|
||||
from text_generation_server.models.model import Model
|
||||
from text_generation_server.models.causal_lm import CausalLM
|
||||
from text_generation_server.models.flash_causal_lm import FlashCausalLM
|
||||
from text_generation_server.models.bloom import BLOOM, BLOOMSharded
|
||||
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
|
||||
from text_generation_server.models.galactica import Galactica, GalacticaSharded
|
||||
|
@ -17,18 +18,22 @@ from text_generation_server.models.t5 import T5Sharded
|
|||
|
||||
try:
|
||||
from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
|
||||
from text_generation_server.models.flash_santacoder import FlashSantacoder
|
||||
|
||||
FLASH_NEOX = torch.cuda.is_available() and int(os.environ.get("FLASH_NEOX", 0)) == 1
|
||||
FLASH_ATTENTION = (
|
||||
torch.cuda.is_available() and int(os.environ.get("FLASH_ATTENTION", 0)) == 1
|
||||
)
|
||||
except ImportError:
|
||||
if int(os.environ.get("FLASH_NEOX", 0)) == 1:
|
||||
logger.exception("Could not import FlashNeoX")
|
||||
FLASH_NEOX = False
|
||||
if int(os.environ.get("FLASH_ATTENTION", 0)) == 1:
|
||||
logger.exception("Could not import Flash Attention models")
|
||||
FLASH_ATTENTION = False
|
||||
|
||||
__all__ = [
|
||||
"Model",
|
||||
"BLOOM",
|
||||
"BLOOMSharded",
|
||||
"CausalLM",
|
||||
"FlashCausalLM",
|
||||
"Galactica",
|
||||
"GalacticaSharded",
|
||||
"GPTNeoxSharded",
|
||||
|
@ -38,9 +43,10 @@ __all__ = [
|
|||
"get_model",
|
||||
]
|
||||
|
||||
if FLASH_NEOX:
|
||||
if FLASH_ATTENTION:
|
||||
__all__.append(FlashNeoX)
|
||||
__all__.append(FlashNeoXSharded)
|
||||
__all__.append(FlashSantacoder)
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
|
@ -63,7 +69,11 @@ def get_model(
|
|||
return Galactica(model_id, revision, quantize=quantize)
|
||||
|
||||
if "santacoder" in model_id:
|
||||
return SantaCoder(model_id, revision, quantize)
|
||||
if sharded:
|
||||
raise NotImplementedError("sharded is not supported for Santacoder")
|
||||
else:
|
||||
santacoder_cls = FlashSantacoder if FLASH_ATTENTION else SantaCoder
|
||||
return santacoder_cls(model_id, revision, quantize)
|
||||
|
||||
config = AutoConfig.from_pretrained(model_id, revision=revision)
|
||||
model_type = config.model_type
|
||||
|
@ -76,10 +86,10 @@ def get_model(
|
|||
|
||||
if model_type == "gpt_neox":
|
||||
if sharded:
|
||||
neox_cls = FlashNeoXSharded if FLASH_NEOX else GPTNeoxSharded
|
||||
neox_cls = FlashNeoXSharded if FLASH_ATTENTION else GPTNeoxSharded
|
||||
return neox_cls(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
neox_cls = FlashNeoX if FLASH_NEOX else CausalLM
|
||||
neox_cls = FlashNeoX if FLASH_ATTENTION else CausalLM
|
||||
return neox_cls(model_id, revision, quantize=quantize)
|
||||
|
||||
if model_type == "t5":
|
||||
|
|
|
@ -0,0 +1,357 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
|
||||
# Flash attention imports
|
||||
import flash_attn_cuda
|
||||
import dropout_layer_norm
|
||||
|
||||
|
||||
class FastLayerNorm(nn.LayerNorm):
|
||||
def forward(self, hidden_states, residual=None):
|
||||
if hidden_states.shape[-1] > 6144:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
return super(FastLayerNorm, self).forward(hidden_states), residual
|
||||
else:
|
||||
(
|
||||
normed_hidden_states,
|
||||
residual,
|
||||
*rest,
|
||||
) = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.weight,
|
||||
self.bias,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.eps,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
False,
|
||||
)
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
|
||||
return normed_hidden_states, residual
|
||||
|
||||
|
||||
class FastLinear(nn.Linear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super(FastLinear, self).__init__(in_features, out_features, bias, device, dtype)
|
||||
|
||||
def transpose_weight(self):
|
||||
self.weight = nn.Parameter(self.weight.T)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
if self.bias is not None:
|
||||
return torch.addmm(self.bias, input, self.weight)
|
||||
return torch.matmul(input, self.weight)
|
||||
|
||||
|
||||
class FlashMQAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_heads,
|
||||
hidden_size,
|
||||
process_group=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.head_size = hidden_size // num_heads
|
||||
|
||||
self.softmax_scale = self.head_size ** (-0.5)
|
||||
|
||||
if process_group is None:
|
||||
self.attn = FastLinear(hidden_size, hidden_size + 2 * self.head_size)
|
||||
self.c_proj = FastLinear(hidden_size, hidden_size)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
):
|
||||
qkv = self.attn(hidden_states)
|
||||
|
||||
# Split query from key_value
|
||||
query, key_value = qkv.split([self.hidden_size, 2 * self.head_size], dim=1)
|
||||
|
||||
# Prepare query and key_value for indexing
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
key_value = key_value.view(-1, 2, 1, self.head_size)
|
||||
|
||||
# Prefill
|
||||
if layer_past_present_indices is None:
|
||||
# Copy to layer past
|
||||
layer_past[...] = key_value
|
||||
# Expand from 1 to num_heads
|
||||
key_value = key_value.expand(-1, 2, self.num_heads, self.head_size)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
key_value[:, 0],
|
||||
key_value[:, 1],
|
||||
attn_output,
|
||||
cu_seqlens,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
max_s,
|
||||
0.0,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
True,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
# Add present to the layer_past tensor at the correct indices
|
||||
layer_past[layer_past_present_indices] = key_value
|
||||
# Expand from 1 to num_heads
|
||||
key_value = layer_past.expand(-1, 2, self.num_heads, self.head_size)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
key_value[:, 0],
|
||||
key_value[:, 1],
|
||||
attn_output,
|
||||
cu_seqlens_q,
|
||||
cu_seqlens,
|
||||
1,
|
||||
max_s,
|
||||
0.0,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
)
|
||||
|
||||
return self.c_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(
|
||||
self, act, hidden_size, intermediate_size, process_group=None
|
||||
):
|
||||
super().__init__()
|
||||
self.act = (
|
||||
ACT2FN[act]
|
||||
if "gelu" not in act
|
||||
else lambda x: torch.nn.functional.gelu(x, approximate="tanh" if act in ["gelu_fast",
|
||||
"gelu_pytorch_tanh"] else None)
|
||||
)
|
||||
|
||||
if process_group is None:
|
||||
self.c_fc = FastLinear(hidden_size, intermediate_size)
|
||||
self.c_proj = FastLinear(intermediate_size, hidden_size)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.c_fc(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.c_proj(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_heads,
|
||||
act,
|
||||
hidden_size,
|
||||
intermediate_size,
|
||||
layer_norm_eps,
|
||||
process_group=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.ln_1 = FastLayerNorm(hidden_size, eps=layer_norm_eps)
|
||||
self.ln_2 = FastLayerNorm(hidden_size, eps=layer_norm_eps)
|
||||
self.attn = FlashMQAttention(
|
||||
num_heads,
|
||||
hidden_size,
|
||||
process_group,
|
||||
)
|
||||
self.mlp = MLP(
|
||||
act,
|
||||
hidden_size,
|
||||
intermediate_size,
|
||||
process_group,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
):
|
||||
hidden_states, residual = self.ln_1(hidden_states, residual)
|
||||
|
||||
hidden_states = self.attn(
|
||||
hidden_states,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
)
|
||||
|
||||
hidden_states, residual = self.ln_2(
|
||||
hidden_states, residual
|
||||
)
|
||||
|
||||
mlp_output = self.mlp(hidden_states)
|
||||
|
||||
return mlp_output, residual
|
||||
|
||||
|
||||
class FlashSantacoderModel(nn.Module):
|
||||
def __init__(self, config, process_group=None):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
if process_group is not None:
|
||||
raise NotImplementedError
|
||||
|
||||
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||||
|
||||
self.h = nn.ModuleList(
|
||||
[
|
||||
Block(
|
||||
config.num_attention_heads,
|
||||
config.activation_function,
|
||||
config.hidden_size,
|
||||
config.n_inner if config.n_inner is not None else 4 * config.hidden_size,
|
||||
config.layer_norm_epsilon,
|
||||
process_group,
|
||||
)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.ln_f = FastLayerNorm(
|
||||
config.hidden_size, eps=config.layer_norm_epsilon
|
||||
)
|
||||
|
||||
self.head_size = self.h[0].attn.head_size
|
||||
self.num_heads = self.h[0].attn.num_heads
|
||||
|
||||
def post_load_weights(self):
|
||||
for layer in self.h:
|
||||
layer: Block
|
||||
layer.attn.attn.transpose_weight()
|
||||
layer.attn.c_proj.transpose_weight()
|
||||
layer.mlp.c_fc.transpose_weight()
|
||||
layer.mlp.c_proj.transpose_weight()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values=None,
|
||||
):
|
||||
hidden_states = self.wte(input_ids) + self.wpe(position_ids)
|
||||
|
||||
# Prefill
|
||||
if past_key_values is None:
|
||||
# Create past tensor
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
len(self.h),
|
||||
len(hidden_states),
|
||||
2,
|
||||
1,
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
layer_past_present_indices = None
|
||||
cu_seqlens_q = None
|
||||
# Decode
|
||||
else:
|
||||
# Create indices from cumulative sequence lengths
|
||||
layer_past_present_indices = cu_seqlens[1:] - 1
|
||||
cu_seqlens_q = torch.arange(
|
||||
cu_seqlens.shape[0], dtype=torch.int32, device=hidden_states.device
|
||||
)
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.h):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values[i],
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
)
|
||||
|
||||
hidden_states, _ = self.ln_f(hidden_states, residual)
|
||||
|
||||
return hidden_states, past_key_values
|
||||
|
||||
|
||||
class FlashSantacoderForCausalLM(nn.Module):
|
||||
def __init__(self, config, process_group=None):
|
||||
super().__init__()
|
||||
|
||||
self.transformer = FlashSantacoderModel(config, process_group)
|
||||
|
||||
self.lm_head = FastLinear(
|
||||
config.hidden_size, config.vocab_size, bias=False
|
||||
)
|
||||
|
||||
def post_load_weights(self):
|
||||
self.transformer.post_load_weights()
|
||||
self.lm_head.transpose_weight()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values=None,
|
||||
):
|
||||
hidden_states, present = self.transformer(
|
||||
input_ids, position_ids, cu_seqlens, max_s, past_key_values
|
||||
)
|
||||
return self.lm_head(hidden_states), present
|
|
@ -0,0 +1,458 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from torch.nn import functional as F
|
||||
|
||||
from dataclasses import dataclass
|
||||
from opentelemetry import trace
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedModel
|
||||
from typing import Optional, Tuple, List, Type, Union
|
||||
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.models.types import (
|
||||
Batch,
|
||||
PrefillTokens,
|
||||
Generation,
|
||||
GeneratedText,
|
||||
)
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.utils import (
|
||||
NextTokenChooser,
|
||||
StoppingCriteria,
|
||||
Sampling,
|
||||
)
|
||||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlashCausalLMBatch(Batch):
|
||||
batch_id: int
|
||||
requests: List[generate_pb2.Request]
|
||||
|
||||
# Decoder values
|
||||
input_ids: torch.Tensor
|
||||
position_ids: torch.Tensor
|
||||
# cumulative sequence lengths
|
||||
cu_seqlens: torch.Tensor
|
||||
max_seqlen: int
|
||||
past_key_values: Optional[torch.Tensor]
|
||||
|
||||
# All tokens
|
||||
all_input_ids: List[List[int]]
|
||||
all_input_ids_tensor: List[torch.Tensor]
|
||||
|
||||
# Lengths of all generations present in the batch
|
||||
input_lengths: List[int]
|
||||
|
||||
# Generation helpers
|
||||
next_token_choosers: List[NextTokenChooser]
|
||||
stopping_criterias: List[StoppingCriteria]
|
||||
|
||||
def to_pb(self) -> generate_pb2.Batch:
|
||||
return generate_pb2.Batch(
|
||||
id=self.batch_id, requests=self.requests, size=len(self)
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_pb(
|
||||
cls,
|
||||
pb: generate_pb2.Batch,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
device: torch.device,
|
||||
) -> "CausalLMBatch":
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [0]
|
||||
max_seqlen = 0
|
||||
|
||||
input_lengths = []
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
|
||||
# Parse batch
|
||||
for r in pb.requests:
|
||||
tokenized_input = tokenizer(r.inputs)["input_ids"]
|
||||
input_length = len(tokenized_input)
|
||||
max_seqlen = max(max_seqlen, input_length)
|
||||
input_lengths.append(input_length)
|
||||
all_input_ids.append(tokenized_input)
|
||||
|
||||
tokenized_input = torch.tensor(tokenized_input, device=device)
|
||||
input_ids.append(tokenized_input)
|
||||
|
||||
# Position ids
|
||||
position_ids.append(torch.arange(0, input_length, dtype=torch.int32))
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.append(cumulative_length + input_length)
|
||||
|
||||
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
||||
stopping_criteria = StoppingCriteria.from_pb(
|
||||
r.stopping_parameters, tokenizer
|
||||
)
|
||||
stopping_criterias.append(stopping_criteria)
|
||||
all_input_ids_tensor.append(
|
||||
F.pad(tokenized_input, (0, stopping_criteria.max_new_tokens))
|
||||
)
|
||||
|
||||
# Update
|
||||
cumulative_length += input_length
|
||||
|
||||
input_ids = torch.concat(input_ids)
|
||||
position_ids = torch.concat(position_ids)
|
||||
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=None,
|
||||
input_lengths=input_lengths,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@tracer.start_as_current_span("concatenate")
|
||||
def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
|
||||
# Batch attributes
|
||||
requests = []
|
||||
input_lengths = []
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Batch tensors
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [torch.tensor([0], dtype=torch.int32)]
|
||||
max_seqlen = 0
|
||||
past_key_values = []
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = torch.tensor(0)
|
||||
|
||||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
all_input_ids_tensor.extend(batch.all_input_ids_tensor)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.append(batch.cu_seqlens[1:] + cumulative_length)
|
||||
|
||||
input_ids.append(batch.input_ids)
|
||||
position_ids.append(batch.position_ids)
|
||||
past_key_values.append(batch.past_key_values)
|
||||
|
||||
max_seqlen = max(max_seqlen, batch.max_seqlen)
|
||||
|
||||
# Update
|
||||
cumulative_length += batch.cu_seqlens[-1]
|
||||
|
||||
input_ids = torch.concat(input_ids)
|
||||
position_ids = torch.concat(position_ids)
|
||||
# Concat on dim=1 as first dim represents the model layers
|
||||
past_key_values = torch.concat(past_key_values, dim=1)
|
||||
cu_seqlens = torch.concat(cu_seqlens)
|
||||
|
||||
return FlashCausalLMBatch(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.requests)
|
||||
|
||||
|
||||
class FlashCausalLM(Model):
|
||||
def __init__(
|
||||
self,
|
||||
model_cls: Type[PreTrainedModel],
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize=False,
|
||||
):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashCausalLM is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError("FlashCausalLM does not support quantization")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
self.model = (
|
||||
model_cls.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
)
|
||||
.eval()
|
||||
.cuda()
|
||||
)
|
||||
|
||||
super(FlashCausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[FlashCausalLMBatch]:
|
||||
return FlashCausalLMBatch
|
||||
|
||||
def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
|
||||
return self.tokenizer.decode(
|
||||
generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
max_s: int,
|
||||
past_key_values: Optional = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Model Forward
|
||||
return self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_s=max_s,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
@tracer.start_as_current_span("generate_token")
|
||||
def generate_token(
|
||||
self, batch: FlashCausalLMBatch
|
||||
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
|
||||
# Better to send to device here to avoid device issues in concatenate
|
||||
position_ids = batch.position_ids.to(self.device, non_blocking=True)
|
||||
cu_seqlens = batch.cu_seqlens.to(self.device)
|
||||
|
||||
out, present = self.forward(
|
||||
batch.input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
batch.max_seqlen,
|
||||
batch.past_key_values,
|
||||
)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
|
||||
# New values for next forward
|
||||
next_batch_input_ids = []
|
||||
next_batch_position_ids = []
|
||||
next_batch_cu_seqlens = [0]
|
||||
next_batch_max_seqlen = 0
|
||||
next_batch_past_key_values = []
|
||||
next_batch_input_lengths = []
|
||||
next_batch_all_input_ids = []
|
||||
next_batch_all_input_ids_tensor = []
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
|
||||
# Results
|
||||
generations: List[Generation] = []
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.input_lengths,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
batch.all_input_ids_tensor,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_input_ids,
|
||||
all_input_ids_tensor,
|
||||
) in enumerate(iterator):
|
||||
# Indexing metadata
|
||||
start_index = cumulative_length
|
||||
end_index = cumulative_length + input_length
|
||||
|
||||
if batch.past_key_values is None:
|
||||
# Prefill mode
|
||||
# out is of shape [cumulative_sequence_lengths, vocab_size]
|
||||
logits = out[start_index:end_index]
|
||||
else:
|
||||
# Decode mode
|
||||
# out is of shape [batch_size, vocab_size]
|
||||
logits = out[i].unsqueeze(0)
|
||||
|
||||
# Select next token
|
||||
next_token_id, logprobs = next_token_chooser(
|
||||
all_input_ids_tensor[None, :input_length], logits
|
||||
)
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_id_item = next_token_id_squeezed.item()
|
||||
|
||||
# Append next token to all tokens
|
||||
all_input_ids.append(next_token_id_item)
|
||||
all_input_ids_tensor[input_length] = next_token_id_item
|
||||
new_input_length = input_length + 1
|
||||
|
||||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id_item]
|
||||
next_token_text = self.decode_token(
|
||||
next_token_id_item,
|
||||
)
|
||||
|
||||
# Evaluate stopping criteria
|
||||
stop, reason = stopping_criteria(
|
||||
next_token_id_item,
|
||||
next_token_text,
|
||||
)
|
||||
|
||||
if stop:
|
||||
# Decode generated tokens
|
||||
output_text = self.decode(
|
||||
all_input_ids[-stopping_criteria.current_tokens :]
|
||||
)
|
||||
# Get seed
|
||||
if isinstance(next_token_chooser.choice, Sampling):
|
||||
seed = next_token_chooser.choice.seed
|
||||
else:
|
||||
seed = None
|
||||
|
||||
generated_text = GeneratedText(
|
||||
output_text, stopping_criteria.current_tokens, reason, seed
|
||||
)
|
||||
else:
|
||||
# Keep request in the batch
|
||||
next_batch_keep_indices.append(i)
|
||||
generated_text = None
|
||||
|
||||
# Get sequence present
|
||||
seq_present = present[:, start_index:end_index]
|
||||
# Pad it for next iter attention
|
||||
past = torch.nn.functional.pad(seq_present, (0, 0, 0, 0, 0, 0, 0, 1))
|
||||
next_batch_past_key_values.append(past)
|
||||
|
||||
next_batch_input_ids.append(next_token_id)
|
||||
next_batch_position_ids.append(input_length)
|
||||
# Cumulative sum
|
||||
next_batch_cu_seqlens.append(
|
||||
next_batch_cu_seqlens[-1] + new_input_length
|
||||
)
|
||||
next_batch_input_lengths.append(new_input_length)
|
||||
next_batch_all_input_ids.append(all_input_ids)
|
||||
next_batch_all_input_ids_tensor.append(all_input_ids_tensor)
|
||||
next_batch_max_seqlen = max(next_batch_max_seqlen, new_input_length)
|
||||
|
||||
# Prefill
|
||||
if stopping_criteria.current_tokens == 1:
|
||||
# Remove generated token to only have prefill and add nan for first prompt token
|
||||
prefill_logprobs = [float("nan")] + logprobs.gather(
|
||||
1, all_input_ids_tensor[1:input_length].unsqueeze(1)
|
||||
).squeeze(1)[:-1].tolist()
|
||||
prefill_token_ids = all_input_ids[:-1]
|
||||
prefill_texts = self.tokenizer.batch_decode(
|
||||
prefill_token_ids,
|
||||
clean_up_tokenization_spaces=False,
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
prefill_tokens = PrefillTokens(
|
||||
prefill_token_ids, prefill_logprobs, prefill_texts
|
||||
)
|
||||
else:
|
||||
prefill_tokens = None
|
||||
|
||||
generation = Generation(
|
||||
request.id,
|
||||
prefill_tokens,
|
||||
next_token_id_item,
|
||||
next_token_logprob,
|
||||
next_token_text,
|
||||
next_token_id_item in self.all_special_ids,
|
||||
generated_text,
|
||||
)
|
||||
|
||||
generations.append(generation)
|
||||
cumulative_length += input_length
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
return generations, None
|
||||
|
||||
# If we finished at least one generation, we need to evict the indices of the generations that finished
|
||||
# from the values of the next batch
|
||||
if len(next_batch_keep_indices) != len(batch):
|
||||
# Apply indices to requests, token_choosers and stopping_criterias that need to be cached
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
|
||||
# Create final next batch tensors
|
||||
next_batch_position_ids = torch.tensor(
|
||||
next_batch_position_ids, dtype=torch.int32
|
||||
)
|
||||
next_batch_cu_seqlens = torch.tensor(next_batch_cu_seqlens, dtype=torch.int32)
|
||||
if len(next_batch_keep_indices) > 1:
|
||||
next_batch_input_ids = torch.concat(next_batch_input_ids).squeeze(1)
|
||||
next_batch_past_key_values = torch.concat(next_batch_past_key_values, dim=1)
|
||||
else:
|
||||
next_batch_input_ids = next_batch_input_ids[0].view(1)
|
||||
next_batch_past_key_values = next_batch_past_key_values[0]
|
||||
|
||||
next_batch = FlashCausalLMBatch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
input_ids=next_batch_input_ids,
|
||||
position_ids=next_batch_position_ids,
|
||||
cu_seqlens=next_batch_cu_seqlens,
|
||||
max_seqlen=next_batch_max_seqlen,
|
||||
past_key_values=next_batch_past_key_values,
|
||||
input_lengths=next_batch_input_lengths,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
all_input_ids_tensor=next_batch_all_input_ids_tensor,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
)
|
||||
return generations, next_batch
|
|
@ -1,33 +1,20 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from torch.nn import functional as F
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from dataclasses import dataclass
|
||||
from opentelemetry import trace
|
||||
from safetensors import safe_open
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase, AutoConfig
|
||||
from typing import Optional, Tuple, List, Type, Union
|
||||
from transformers import AutoTokenizer, AutoConfig
|
||||
from typing import Optional, Tuple, List
|
||||
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.models.flash_neox_modeling import (
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_neox_modeling import (
|
||||
FlashGPTNeoXForCausalLM,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
)
|
||||
from text_generation_server.models.types import (
|
||||
Batch,
|
||||
PrefillTokens,
|
||||
Generation,
|
||||
GeneratedText,
|
||||
)
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.utils import (
|
||||
NextTokenChooser,
|
||||
StoppingCriteria,
|
||||
Sampling,
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
)
|
||||
|
@ -35,437 +22,12 @@ from text_generation_server.utils import (
|
|||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlashNeoXBatch(Batch):
|
||||
batch_id: int
|
||||
requests: List[generate_pb2.Request]
|
||||
|
||||
# Decoder values
|
||||
input_ids: torch.Tensor
|
||||
position_ids: torch.Tensor
|
||||
# cumulative sequence lengths
|
||||
cu_seqlens: torch.Tensor
|
||||
max_seqlen: int
|
||||
past_key_values: Optional[torch.Tensor]
|
||||
|
||||
# All tokens
|
||||
all_input_ids: List[List[int]]
|
||||
all_input_ids_tensor: List[torch.Tensor]
|
||||
|
||||
# Lengths of all generations present in the batch
|
||||
input_lengths: List[int]
|
||||
|
||||
# Generation helpers
|
||||
next_token_choosers: List[NextTokenChooser]
|
||||
stopping_criterias: List[StoppingCriteria]
|
||||
|
||||
def to_pb(self) -> generate_pb2.Batch:
|
||||
return generate_pb2.Batch(
|
||||
id=self.batch_id, requests=self.requests, size=len(self)
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_pb(
|
||||
cls,
|
||||
pb: generate_pb2.Batch,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
device: torch.device,
|
||||
) -> "CausalLMBatch":
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [0]
|
||||
max_seqlen = 0
|
||||
|
||||
input_lengths = []
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
|
||||
# Parse batch
|
||||
for r in pb.requests:
|
||||
tokenized_input = tokenizer(r.inputs)["input_ids"]
|
||||
input_length = len(tokenized_input)
|
||||
max_seqlen = max(max_seqlen, input_length)
|
||||
input_lengths.append(input_length)
|
||||
all_input_ids.append(tokenized_input)
|
||||
|
||||
tokenized_input = torch.tensor(tokenized_input, device=device)
|
||||
input_ids.append(tokenized_input)
|
||||
|
||||
# Position ids
|
||||
position_ids.append(torch.arange(0, input_length, dtype=torch.int32))
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.append(cumulative_length + input_length)
|
||||
|
||||
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
||||
stopping_criteria = StoppingCriteria.from_pb(
|
||||
r.stopping_parameters, tokenizer
|
||||
)
|
||||
stopping_criterias.append(stopping_criteria)
|
||||
all_input_ids_tensor.append(
|
||||
F.pad(tokenized_input, (0, stopping_criteria.max_new_tokens))
|
||||
)
|
||||
|
||||
# Update
|
||||
cumulative_length += input_length
|
||||
|
||||
input_ids = torch.concat(input_ids)
|
||||
position_ids = torch.concat(position_ids)
|
||||
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=None,
|
||||
input_lengths=input_lengths,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@tracer.start_as_current_span("concatenate")
|
||||
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
|
||||
# Batch attributes
|
||||
requests = []
|
||||
input_lengths = []
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Batch tensors
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [torch.tensor([0], dtype=torch.int32)]
|
||||
max_seqlen = 0
|
||||
past_key_values = []
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = torch.tensor(0)
|
||||
|
||||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
all_input_ids_tensor.extend(batch.all_input_ids_tensor)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.append(batch.cu_seqlens[1:] + cumulative_length)
|
||||
|
||||
input_ids.append(batch.input_ids)
|
||||
position_ids.append(batch.position_ids)
|
||||
past_key_values.append(batch.past_key_values)
|
||||
|
||||
max_seqlen = max(max_seqlen, batch.max_seqlen)
|
||||
|
||||
# Update
|
||||
cumulative_length += batch.cu_seqlens[-1]
|
||||
|
||||
input_ids = torch.concat(input_ids)
|
||||
position_ids = torch.concat(position_ids)
|
||||
# Concat on dim=1 as first dim represents the model layers
|
||||
past_key_values = torch.concat(past_key_values, dim=1)
|
||||
cu_seqlens = torch.concat(cu_seqlens)
|
||||
|
||||
return FlashNeoXBatch(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.requests)
|
||||
|
||||
|
||||
class FlashNeoX(Model):
|
||||
class FlashNeoX(FlashCausalLM):
|
||||
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashNeoX is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError("FlashNeoX does not support quantization")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
self.model = (
|
||||
FlashGPTNeoXForCausalLM.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
)
|
||||
.eval()
|
||||
.cuda()
|
||||
)
|
||||
tokenizer.pad_token_id = (
|
||||
self.model.config.pad_token_id
|
||||
if self.model.config.pad_token_id is not None
|
||||
else self.model.config.eos_token_id
|
||||
)
|
||||
|
||||
super(FlashNeoX, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
FlashGPTNeoXForCausalLM, model_id, revision, quantize
|
||||
)
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[FlashNeoXBatch]:
|
||||
return FlashNeoXBatch
|
||||
|
||||
def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
|
||||
return self.tokenizer.decode(
|
||||
generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
max_s: int,
|
||||
past_key_values: Optional = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Model Forward
|
||||
return self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_s=max_s,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
@tracer.start_as_current_span("generate_token")
|
||||
def generate_token(
|
||||
self, batch: FlashNeoXBatch
|
||||
) -> Tuple[List[Generation], Optional[FlashNeoXBatch]]:
|
||||
# Better to send to device here to avoid device issues in concatenate
|
||||
position_ids = batch.position_ids.to(self.device, non_blocking=True)
|
||||
cu_seqlens = batch.cu_seqlens.to(self.device)
|
||||
|
||||
out, present = self.forward(
|
||||
batch.input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
batch.max_seqlen,
|
||||
batch.past_key_values,
|
||||
)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
|
||||
# New values for next forward
|
||||
next_batch_input_ids = []
|
||||
next_batch_position_ids = []
|
||||
next_batch_cu_seqlens = [0]
|
||||
next_batch_max_seqlen = 0
|
||||
next_batch_past_key_values = []
|
||||
next_batch_input_lengths = []
|
||||
next_batch_all_input_ids = []
|
||||
next_batch_all_input_ids_tensor = []
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
|
||||
# Results
|
||||
generations: List[Generation] = []
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.input_lengths,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
batch.all_input_ids_tensor,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_input_ids,
|
||||
all_input_ids_tensor,
|
||||
) in enumerate(iterator):
|
||||
# Indexing metadata
|
||||
start_index = cumulative_length
|
||||
end_index = cumulative_length + input_length
|
||||
|
||||
if batch.past_key_values is None:
|
||||
# Prefill mode
|
||||
# out is of shape [cumulative_sequence_lengths, vocab_size]
|
||||
logits = out[start_index:end_index]
|
||||
else:
|
||||
# Decode mode
|
||||
# out is of shape [batch_size, vocab_size]
|
||||
logits = out[i].unsqueeze(0)
|
||||
|
||||
# Select next token
|
||||
next_token_id, logprobs = next_token_chooser(
|
||||
all_input_ids_tensor[None, :input_length], logits
|
||||
)
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_id_item = next_token_id_squeezed.item()
|
||||
|
||||
# Append next token to all tokens
|
||||
all_input_ids.append(next_token_id_item)
|
||||
all_input_ids_tensor[input_length] = next_token_id_item
|
||||
new_input_length = input_length + 1
|
||||
|
||||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id_item]
|
||||
next_token_text = self.decode_token(
|
||||
next_token_id_item,
|
||||
)
|
||||
|
||||
# Evaluate stopping criteria
|
||||
stop, reason = stopping_criteria(
|
||||
next_token_id_item,
|
||||
next_token_text,
|
||||
)
|
||||
|
||||
if stop:
|
||||
# Decode generated tokens
|
||||
output_text = self.decode(
|
||||
all_input_ids[-stopping_criteria.current_tokens :]
|
||||
)
|
||||
# Get seed
|
||||
if isinstance(next_token_chooser.choice, Sampling):
|
||||
seed = next_token_chooser.choice.seed
|
||||
else:
|
||||
seed = None
|
||||
|
||||
generated_text = GeneratedText(
|
||||
output_text, stopping_criteria.current_tokens, reason, seed
|
||||
)
|
||||
else:
|
||||
# Keep request in the batch
|
||||
next_batch_keep_indices.append(i)
|
||||
generated_text = None
|
||||
|
||||
# Get sequence present
|
||||
seq_present = present[:, start_index:end_index]
|
||||
# Pad it for next iter attention
|
||||
past = torch.nn.functional.pad(seq_present, (0, 0, 0, 0, 0, 0, 0, 1))
|
||||
next_batch_past_key_values.append(past)
|
||||
|
||||
next_batch_input_ids.append(next_token_id)
|
||||
next_batch_position_ids.append(input_length)
|
||||
# Cumulative sum
|
||||
next_batch_cu_seqlens.append(
|
||||
next_batch_cu_seqlens[-1] + new_input_length
|
||||
)
|
||||
next_batch_input_lengths.append(new_input_length)
|
||||
next_batch_all_input_ids.append(all_input_ids)
|
||||
next_batch_all_input_ids_tensor.append(all_input_ids_tensor)
|
||||
next_batch_max_seqlen = max(next_batch_max_seqlen, new_input_length)
|
||||
|
||||
# Prefill
|
||||
if stopping_criteria.current_tokens == 1:
|
||||
# Remove generated token to only have prefill and add nan for first prompt token
|
||||
prefill_logprobs = [float("nan")] + logprobs.gather(
|
||||
1, all_input_ids_tensor[1:input_length].unsqueeze(1)
|
||||
).squeeze(1)[:-1].tolist()
|
||||
prefill_token_ids = all_input_ids[:-1]
|
||||
prefill_texts = self.tokenizer.batch_decode(
|
||||
prefill_token_ids,
|
||||
clean_up_tokenization_spaces=False,
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
prefill_tokens = PrefillTokens(
|
||||
prefill_token_ids, prefill_logprobs, prefill_texts
|
||||
)
|
||||
else:
|
||||
prefill_tokens = None
|
||||
|
||||
generation = Generation(
|
||||
request.id,
|
||||
prefill_tokens,
|
||||
next_token_id_item,
|
||||
next_token_logprob,
|
||||
next_token_text,
|
||||
next_token_id_item in self.all_special_ids,
|
||||
generated_text,
|
||||
)
|
||||
|
||||
generations.append(generation)
|
||||
cumulative_length += input_length
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
return generations, None
|
||||
|
||||
# If we finished at least one generation, we need to evict the indices of the generations that finished
|
||||
# from the values of the next batch
|
||||
if len(next_batch_keep_indices) != len(batch):
|
||||
# Apply indices to requests, token_choosers and stopping_criterias that need to be cached
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
|
||||
# Create final next batch tensors
|
||||
next_batch_position_ids = torch.tensor(
|
||||
next_batch_position_ids, dtype=torch.int32
|
||||
)
|
||||
next_batch_cu_seqlens = torch.tensor(next_batch_cu_seqlens, dtype=torch.int32)
|
||||
if len(next_batch_keep_indices) > 1:
|
||||
next_batch_input_ids = torch.concat(next_batch_input_ids).squeeze(1)
|
||||
next_batch_past_key_values = torch.concat(next_batch_past_key_values, dim=1)
|
||||
else:
|
||||
next_batch_input_ids = next_batch_input_ids[0].view(1)
|
||||
next_batch_past_key_values = next_batch_past_key_values[0]
|
||||
|
||||
next_batch = FlashNeoXBatch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
input_ids=next_batch_input_ids,
|
||||
position_ids=next_batch_position_ids,
|
||||
cu_seqlens=next_batch_cu_seqlens,
|
||||
max_seqlen=next_batch_max_seqlen,
|
||||
past_key_values=next_batch_past_key_values,
|
||||
input_lengths=next_batch_input_lengths,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
all_input_ids_tensor=next_batch_all_input_ids_tensor,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
)
|
||||
return generations, next_batch
|
||||
|
||||
|
||||
class FlashNeoXSharded(FlashNeoX):
|
||||
def __init__(
|
||||
|
@ -508,7 +70,7 @@ class FlashNeoXSharded(FlashNeoX):
|
|||
model.post_load_weights()
|
||||
self.model = model.eval().to(dtype)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashNeoX, self).__init__(
|
||||
super(FlashCausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
|
|
@ -0,0 +1,138 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from opentelemetry import trace
|
||||
from pathlib import Path
|
||||
from transformers import AutoTokenizer, AutoConfig
|
||||
from typing import Optional, List
|
||||
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
|
||||
FlashSantacoderForCausalLM
|
||||
)
|
||||
from text_generation_server.utils import (
|
||||
weight_files,
|
||||
download_weights,
|
||||
weight_hub_files,
|
||||
LocalEntryNotFoundError,
|
||||
)
|
||||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
class FlashSantacoder(FlashCausalLM):
|
||||
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashSantacoder is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError("FlashSantacoder does not support quantization")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_id, revision=revision,
|
||||
trust_remote_code=True # Needed as the config is not part of Transformers
|
||||
)
|
||||
|
||||
# We do not use from_pretrained as we modified the model internal module layout
|
||||
try:
|
||||
filenames = weight_files(model_id, revision, ".bin")
|
||||
# Local files not found
|
||||
except LocalEntryNotFoundError:
|
||||
hub_files = weight_hub_files(model_id, revision, ".bin")
|
||||
filenames = download_weights(hub_files, model_id, revision)
|
||||
|
||||
with init_empty_weights():
|
||||
model = FlashSantacoderForCausalLM(config)
|
||||
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
)
|
||||
self.model = model.eval().to(device).to(dtype)
|
||||
|
||||
super(FlashCausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model: FlashSantacoderForCausalLM,
|
||||
filenames: List[Path],
|
||||
):
|
||||
for filename in filenames:
|
||||
state_dict = torch.load(filename, map_location="cpu")
|
||||
for key, value in state_dict.items():
|
||||
layer_name = ".".join(key.split(".")[:4])
|
||||
|
||||
# Fused qkv
|
||||
if "q_attn.weight" in key or "kv_attn.weight" in key:
|
||||
final_key = layer_name + ".attn.weight"
|
||||
elif "q_attn.bias" in key or "kv_attn.bias" in key:
|
||||
final_key = layer_name + ".attn.bias"
|
||||
|
||||
else:
|
||||
final_key = key
|
||||
|
||||
module_name, param_name = final_key.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
|
||||
try:
|
||||
current_parameter_tensor = module._parameters[param_name]
|
||||
except KeyError:
|
||||
current_parameter_tensor = None
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
if "c_fc.weight" in key or "c_proj.weight" in key or "q_attn.weight" in key or "kv_attn.weight" in key:
|
||||
# Tranpose as we use nn.Linear instead of Conv1D
|
||||
value = value.T
|
||||
|
||||
if current_parameter_tensor.device == torch.device("meta"):
|
||||
# Init qkv
|
||||
if "attn.weight" in final_key:
|
||||
module._parameters[param_name] = value.new_empty(
|
||||
(model.transformer.head_size * (model.transformer.num_heads + 2), value.shape[1])
|
||||
)
|
||||
elif "attn.bias" in final_key:
|
||||
module._parameters[param_name] = value.new_empty(
|
||||
(model.transformer.head_size * (model.transformer.num_heads + 2))
|
||||
)
|
||||
|
||||
# Copy to correct slice
|
||||
if "q_attn.weight" in key:
|
||||
module._parameters[param_name][: value.shape[0]] = value
|
||||
elif "q_attn.bias" in key:
|
||||
module._parameters[param_name][: value.shape[0]] = value
|
||||
elif "kv_attn.weight" in key:
|
||||
module._parameters[param_name][
|
||||
model.transformer.head_size * model.transformer.num_heads:
|
||||
] = value
|
||||
elif "kv_attn.bias" in key:
|
||||
module._parameters[param_name][
|
||||
model.transformer.head_size * model.transformer.num_heads:
|
||||
] = value
|
||||
else:
|
||||
if current_parameter_tensor.shape != value.shape:
|
||||
raise ValueError(
|
||||
f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
|
||||
)
|
||||
module._parameters[param_name] = value
|
||||
else:
|
||||
module._buffers[param_name] = value
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
model.post_load_weights()
|
||||
|
||||
def decode(self, generated_ids: List[int]) -> str:
|
||||
# Do not skip special tokens as they are used for custom parsing rules of the generated text
|
||||
return self.tokenizer.decode(
|
||||
generated_ids, skip_special_tokens=False, cleanup_tokenization_spaces=False
|
||||
)
|
|
@ -1,9 +1,9 @@
|
|||
[
|
||||
"bigcode/santacoder",
|
||||
"bigscience/bloom",
|
||||
"bigscience/bloomz",
|
||||
"EleutherAI/gpt-neox-20b",
|
||||
"google/flan-ul2",
|
||||
"google/flan-t5-xxl",
|
||||
"OpenAssistant/oasst-sft-1-pythia-12b",
|
||||
"olivierdehaene/optimized-santacoder"
|
||||
"OpenAssistant/oasst-sft-1-pythia-12b"
|
||||
]
|
||||
|
|
Loading…
Reference in New Issue