chore(client): Support Pydantic 2 (#900)
This should allow users to use either Pydantic 2 or Pydantic 1. I couldn't run all tests locally because I reran them too often and got rate limited, but I believe this is sufficient.
This commit is contained in:
parent
033230ae66
commit
c8bbbd8129
|
@ -12,7 +12,7 @@ repository = "https://github.com/huggingface/text-generation-inference"
|
|||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.7"
|
||||
pydantic = "^1.10"
|
||||
pydantic = "> 1.10, < 3"
|
||||
aiohttp = "^3.8"
|
||||
huggingface-hub = ">= 0.12, < 1.0"
|
||||
|
||||
|
|
|
@ -18,21 +18,21 @@ class Parameters(BaseModel):
|
|||
# Stop generating tokens if a member of `stop_sequences` is generated
|
||||
stop: List[str] = []
|
||||
# Random sampling seed
|
||||
seed: Optional[int]
|
||||
seed: Optional[int] = None
|
||||
# The value used to module the logits distribution.
|
||||
temperature: Optional[float]
|
||||
temperature: Optional[float] = None
|
||||
# The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
||||
top_k: Optional[int]
|
||||
top_k: Optional[int] = None
|
||||
# If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
|
||||
# higher are kept for generation.
|
||||
top_p: Optional[float]
|
||||
top_p: Optional[float] = None
|
||||
# truncate inputs tokens to the given size
|
||||
truncate: Optional[int]
|
||||
truncate: Optional[int] = None
|
||||
# Typical Decoding mass
|
||||
# See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
|
||||
typical_p: Optional[float]
|
||||
typical_p: Optional[float] = None
|
||||
# Generate best_of sequences and return the one if the highest token logprobs
|
||||
best_of: Optional[int]
|
||||
best_of: Optional[int] = None
|
||||
# Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
|
||||
watermark: bool = False
|
||||
# Get generation details
|
||||
|
@ -114,7 +114,7 @@ class Request(BaseModel):
|
|||
# Prompt
|
||||
inputs: str
|
||||
# Generation parameters
|
||||
parameters: Optional[Parameters]
|
||||
parameters: Optional[Parameters] = None
|
||||
# Whether to stream output tokens
|
||||
stream: bool = False
|
||||
|
||||
|
@ -145,7 +145,7 @@ class InputToken(BaseModel):
|
|||
text: str
|
||||
# Logprob
|
||||
# Optional since the logprob of the first token cannot be computed
|
||||
logprob: Optional[float]
|
||||
logprob: Optional[float] = None
|
||||
|
||||
|
||||
# Generated tokens
|
||||
|
@ -180,7 +180,7 @@ class BestOfSequence(BaseModel):
|
|||
# Number of generated tokens
|
||||
generated_tokens: int
|
||||
# Sampling seed if sampling was activated
|
||||
seed: Optional[int]
|
||||
seed: Optional[int] = None
|
||||
# Decoder input tokens, empty if decoder_input_details is False
|
||||
prefill: List[InputToken]
|
||||
# Generated tokens
|
||||
|
@ -196,7 +196,7 @@ class Details(BaseModel):
|
|||
# Number of generated tokens
|
||||
generated_tokens: int
|
||||
# Sampling seed if sampling was activated
|
||||
seed: Optional[int]
|
||||
seed: Optional[int] = None
|
||||
# Decoder input tokens, empty if decoder_input_details is False
|
||||
prefill: List[InputToken]
|
||||
# Generated tokens
|
||||
|
@ -204,7 +204,7 @@ class Details(BaseModel):
|
|||
# Most likely tokens
|
||||
top_tokens: Optional[List[List[Token]]]
|
||||
# Additional sequences when using the `best_of` parameter
|
||||
best_of_sequences: Optional[List[BestOfSequence]]
|
||||
best_of_sequences: Optional[List[BestOfSequence]] = None
|
||||
|
||||
|
||||
# `generate` return value
|
||||
|
@ -222,7 +222,7 @@ class StreamDetails(BaseModel):
|
|||
# Number of generated tokens
|
||||
generated_tokens: int
|
||||
# Sampling seed if sampling was activated
|
||||
seed: Optional[int]
|
||||
seed: Optional[int] = None
|
||||
|
||||
|
||||
# `generate_stream` return value
|
||||
|
@ -233,10 +233,10 @@ class StreamResponse(BaseModel):
|
|||
top_tokens: Optional[List[Token]]
|
||||
# Complete generated text
|
||||
# Only available when the generation is finished
|
||||
generated_text: Optional[str]
|
||||
generated_text: Optional[str] = None
|
||||
# Generation details
|
||||
# Only available when the generation is finished
|
||||
details: Optional[StreamDetails]
|
||||
details: Optional[StreamDetails] = None
|
||||
|
||||
|
||||
# Inference API currently deployed model
|
||||
|
|
Loading…
Reference in New Issue