Outlines guided generation (#1539)

This WIP PR starts to add grammar support via outlines, currently this
PR supports very simple regex grammars and does not optimize for
precompiling or caching grammar fsm's.

todo:
- [X] add simple outlines guidance to `NextTokenChooser`
- [X] update protos for grammar
- [X] update generation params API
- [X] constrain simple grammar
- [ ] support parsing more complex grammar into fsm
- [ ] support all outline support grammar types
- [ ] explore optimizations to avoid recompiling grammars

guided request
```bash
curl -s 'http://localhost:3000/generate' \
--header 'Content-Type: application/json' \
--data-raw '{
    "inputs": "make an email for david: \n",
    "parameters": {
        "max_new_tokens": 6,
        "grammar": "[\\w-]+@([\\w-]+\\.)+[\\w-]+"
    }
}' | jq
```
response
```json
{
  "generated_text": "david@example.com"
}
```

unguided request
```bash
curl -s 'http://localhost:3000/generate' \
--header 'Content-Type: application/json' \
--data '{
    "inputs": "make an email for david: \n",
    "parameters": {
        "max_new_tokens": 6
    }
}' | jq
```
response
```json
{
  "generated_text": "    email = 'david"
}
```
This commit is contained in:
drbh 2024-02-15 04:28:10 -05:00 committed by GitHub
parent 4c2848b24b
commit cef0553d59
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
31 changed files with 1660 additions and 53 deletions

View File

@ -8,7 +8,7 @@ use crate::app::App;
use crate::event::Event;
use crossterm::ExecutableCommand;
use std::io;
use text_generation_client::{NextTokenChooserParameters, ShardedClient};
use text_generation_client::{GrammarType, NextTokenChooserParameters, ShardedClient};
use tokenizers::Tokenizer;
use tokio::sync::{broadcast, mpsc};
use tui::backend::CrosstermBackend;
@ -45,6 +45,8 @@ pub async fn run(
repetition_penalty: repetition_penalty.unwrap_or(1.0),
frequency_penalty: frequency_penalty.unwrap_or(0.0),
watermark,
grammar: String::new(),
grammar_type: GrammarType::None as i32,
};
// Initialize terminal properties

View File

@ -10,6 +10,7 @@ from text_generation.types import (
Response,
Request,
Parameters,
Grammar,
)
from text_generation.errors import parse_error
@ -76,6 +77,7 @@ class Client:
watermark: bool = False,
decoder_input_details: bool = False,
top_n_tokens: Optional[int] = None,
grammar: Optional[Grammar] = None,
) -> Response:
"""
Given a prompt, generate the following text
@ -138,6 +140,7 @@ class Client:
watermark=watermark,
decoder_input_details=decoder_input_details,
top_n_tokens=top_n_tokens,
grammar=grammar,
)
request = Request(inputs=prompt, stream=False, parameters=parameters)
@ -169,6 +172,7 @@ class Client:
typical_p: Optional[float] = None,
watermark: bool = False,
top_n_tokens: Optional[int] = None,
grammar: Optional[Grammar] = None,
) -> Iterator[StreamResponse]:
"""
Given a prompt, generate the following stream of tokens
@ -227,6 +231,7 @@ class Client:
typical_p=typical_p,
watermark=watermark,
top_n_tokens=top_n_tokens,
grammar=grammar,
)
request = Request(inputs=prompt, stream=True, parameters=parameters)
@ -326,6 +331,7 @@ class AsyncClient:
watermark: bool = False,
decoder_input_details: bool = False,
top_n_tokens: Optional[int] = None,
grammar: Optional[Grammar] = None,
) -> Response:
"""
Given a prompt, generate the following text asynchronously
@ -370,6 +376,7 @@ class AsyncClient:
Returns:
Response: generated response
"""
# Validate parameters
parameters = Parameters(
best_of=best_of,
@ -388,6 +395,7 @@ class AsyncClient:
typical_p=typical_p,
watermark=watermark,
top_n_tokens=top_n_tokens,
grammar=grammar,
)
request = Request(inputs=prompt, stream=False, parameters=parameters)
@ -417,6 +425,7 @@ class AsyncClient:
typical_p: Optional[float] = None,
watermark: bool = False,
top_n_tokens: Optional[int] = None,
grammar: Optional[Grammar] = None,
) -> AsyncIterator[StreamResponse]:
"""
Given a prompt, generate the following stream of tokens asynchronously
@ -475,6 +484,7 @@ class AsyncClient:
typical_p=typical_p,
watermark=watermark,
top_n_tokens=top_n_tokens,
grammar=grammar,
)
request = Request(inputs=prompt, stream=True, parameters=parameters)

View File

@ -1,10 +1,24 @@
from enum import Enum
from pydantic import BaseModel, validator
from typing import Optional, List
from typing import Optional, List, Union
from text_generation.errors import ValidationError
# enum for grammar type
class GrammarType(str, Enum):
Json = "json"
Regex = "regex"
# Grammar type and value
class Grammar(BaseModel):
# Grammar type
type: GrammarType
# Grammar value
value: Union[str, dict]
class Parameters(BaseModel):
# Activate logits sampling
do_sample: bool = False
@ -41,6 +55,8 @@ class Parameters(BaseModel):
decoder_input_details: bool = False
# Return the N most likely tokens at each step
top_n_tokens: Optional[int] = None
# grammar to use for generation
grammar: Optional[Grammar] = None
@validator("best_of")
def valid_best_of(cls, field_value, values):
@ -109,6 +125,14 @@ class Parameters(BaseModel):
raise ValidationError("`top_n_tokens` must be strictly positive")
return v
@validator("grammar")
def valid_grammar(cls, v):
if v is not None:
if v.type == GrammarType.Regex and not v.value:
raise ValidationError("`value` cannot be empty for `regex` grammar")
if v.type == GrammarType.Json and not v.value:
raise ValidationError("`value` cannot be empty for `json` grammar")
return v
class Request(BaseModel):
# Prompt
@ -157,7 +181,7 @@ class Token(BaseModel):
# Token text
text: str
# Logprob
logprob: float
logprob: Optional[float] = None
# Is the token a special token
# Can be used to ignore tokens when concatenating
special: bool

View File

@ -378,6 +378,14 @@ Options:
[env: TOKENIZER_CONFIG_PATH=]
```
## DISABLE_GRAMMAR_SUPPORT
```shell
--disable-grammar-support
Disable outlines grammar constrained generation. This is a feature that allows you to generate text that follows a specific grammar
[env: DISABLE_GRAMMAR_SUPPORT=]
```
## ENV
```shell

View File

@ -16,7 +16,14 @@ from syrupy.extensions.json import JSONSnapshotExtension
from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError
from text_generation import AsyncClient
from text_generation.types import Response, Details, InputToken, Token, BestOfSequence
from text_generation.types import (
Response,
Details,
InputToken,
Token,
BestOfSequence,
Grammar,
)
DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None)
HUGGING_FACE_HUB_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN", None)
@ -224,6 +231,7 @@ def launcher(event_loop):
quantize: Optional[str] = None,
trust_remote_code: bool = False,
use_flash_attention: bool = True,
disable_grammar_support: bool = False,
dtype: Optional[str] = None,
):
port = random.randint(8000, 10_000)
@ -247,6 +255,8 @@ def launcher(event_loop):
env = os.environ
if disable_grammar_support:
args.append("--disable-grammar-support")
if num_shard is not None:
args.extend(["--num-shard", str(num_shard)])
if quantize is not None:
@ -287,12 +297,15 @@ def launcher(event_loop):
quantize: Optional[str] = None,
trust_remote_code: bool = False,
use_flash_attention: bool = True,
disable_grammar_support: bool = False,
dtype: Optional[str] = None,
):
port = random.randint(8000, 10_000)
args = ["--model-id", model_id, "--env"]
if disable_grammar_support:
args.append("--disable-grammar-support")
if num_shard is not None:
args.extend(["--num-shard", str(num_shard)])
if quantize is not None:
@ -370,11 +383,22 @@ def launcher(event_loop):
@pytest.fixture(scope="module")
def generate_load():
async def generate_load_inner(
client: AsyncClient, prompt: str, max_new_tokens: int, n: int
client: AsyncClient,
prompt: str,
max_new_tokens: int,
n: int,
seed: Optional[int] = None,
grammar: Optional[Grammar] = None,
stop_sequences: Optional[List[str]] = None,
) -> List[Response]:
futures = [
client.generate(
prompt, max_new_tokens=max_new_tokens, decoder_input_details=True
prompt,
max_new_tokens=max_new_tokens,
decoder_input_details=True,
seed=seed,
grammar=grammar,
stop_sequences=stop_sequences,
)
for _ in range(n)
]

View File

@ -0,0 +1,89 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 1,
"logprob": null,
"text": "<s>"
},
{
"id": 4321,
"logprob": -13.90625,
"text": "Test"
},
{
"id": 2009,
"logprob": -12.328125,
"text": "request"
}
],
"seed": null,
"tokens": [
{
"id": 13,
"logprob": -2.0566406,
"special": false,
"text": "\n"
},
{
"id": 13,
"logprob": -1.5253906,
"special": false,
"text": "\n"
},
{
"id": 29902,
"logprob": -2.7578125,
"special": false,
"text": "I"
},
{
"id": 4966,
"logprob": -1.9033203,
"special": false,
"text": " hope"
},
{
"id": 445,
"logprob": -0.5019531,
"special": false,
"text": " this"
},
{
"id": 6911,
"logprob": -0.21264648,
"special": false,
"text": " helps"
},
{
"id": 29991,
"logprob": -0.5991211,
"special": false,
"text": "!"
},
{
"id": 2803,
"logprob": -0.37475586,
"special": false,
"text": " Let"
},
{
"id": 592,
"logprob": -0.018463135,
"special": false,
"text": " me"
},
{
"id": 1073,
"logprob": -0.0008597374,
"special": false,
"text": " know"
}
],
"top_tokens": null
},
"generated_text": "\n\nI hope this helps! Let me know"
}

View File

@ -0,0 +1,274 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "eos_token",
"generated_tokens": 30,
"prefill": [
{
"id": 1,
"logprob": null,
"text": "<s>"
},
{
"id": 5235,
"logprob": -10.0625,
"text": "info"
},
{
"id": 29901,
"logprob": -3.2324219,
"text": ":"
},
{
"id": 13260,
"logprob": -10.625,
"text": "dav"
},
{
"id": 333,
"logprob": -0.08276367,
"text": "id"
},
{
"id": 8753,
"logprob": -7.5273438,
"text": "hol"
},
{
"id": 17559,
"logprob": -3.8476562,
"text": "tz"
},
{
"id": 763,
"logprob": -10.140625,
"text": "like"
},
{
"id": 10697,
"logprob": -10.1953125,
"text": "trees"
},
{
"id": 322,
"logprob": -2.5742188,
"text": "and"
},
{
"id": 756,
"logprob": -7.4882812,
"text": "has"
},
{
"id": 1023,
"logprob": -5.0507812,
"text": "two"
},
{
"id": 274,
"logprob": -5.3164062,
"text": "c"
},
{
"id": 1446,
"logprob": -0.6694336,
"text": "ats"
},
{
"id": 29889,
"logprob": -0.9995117,
"text": "."
},
{
"id": 29871,
"logprob": -4.2421875,
"text": ""
}
],
"seed": null,
"tokens": [
{
"id": 6377,
"logprob": -0.14916992,
"special": false,
"text": "{\""
},
{
"id": 29888,
"logprob": -0.13598633,
"special": false,
"text": "f"
},
{
"id": 12935,
"logprob": -0.017669678,
"special": false,
"text": "irs"
},
{
"id": 29873,
"logprob": -0.00085639954,
"special": false,
"text": "t"
},
{
"id": 1170,
"logprob": -0.0054016113,
"special": false,
"text": "Name"
},
{
"id": 4710,
"logprob": -0.13549805,
"special": false,
"text": "\":\""
},
{
"id": 19504,
"logprob": -0.8852539,
"special": false,
"text": "David"
},
{
"id": 3284,
"logprob": -0.16394043,
"special": false,
"text": "\",\""
},
{
"id": 4230,
"logprob": -0.020492554,
"special": false,
"text": "last"
},
{
"id": 1170,
"logprob": -0.0013818741,
"special": false,
"text": "Name"
},
{
"id": 4710,
"logprob": -0.0067749023,
"special": false,
"text": "\":\""
},
{
"id": 29950,
"logprob": -0.11578369,
"special": false,
"text": "H"
},
{
"id": 14339,
"logprob": -0.004131317,
"special": false,
"text": "olt"
},
{
"id": 29920,
"logprob": -0.0033359528,
"special": false,
"text": "z"
},
{
"id": 3284,
"logprob": -0.20471191,
"special": false,
"text": "\",\""
},
{
"id": 29882,
"logprob": -0.0069274902,
"special": false,
"text": "h"
},
{
"id": 20838,
"logprob": -0.19580078,
"special": false,
"text": "obb"
},
{
"id": 29891,
"logprob": -2.2649765e-06,
"special": false,
"text": "y"
},
{
"id": 4710,
"logprob": -0.32080078,
"special": false,
"text": "\":\""
},
{
"id": 29911,
"logprob": -2.1035156,
"special": false,
"text": "T"
},
{
"id": 11003,
"logprob": -0.020767212,
"special": false,
"text": "rees"
},
{
"id": 3284,
"logprob": -0.6010742,
"special": false,
"text": "\",\""
},
{
"id": 29876,
"logprob": -0.57666016,
"special": false,
"text": "n"
},
{
"id": 398,
"logprob": -0.0061073303,
"special": false,
"text": "um"
},
{
"id": 29907,
"logprob": -0.45703125,
"special": false,
"text": "C"
},
{
"id": 1446,
"logprob": -0.0002872944,
"special": false,
"text": "ats"
},
{
"id": 1115,
"logprob": -0.0021018982,
"special": false,
"text": "\":"
},
{
"id": 29906,
"logprob": -0.08996582,
"special": false,
"text": "2"
},
{
"id": 29913,
"logprob": -0.021697998,
"special": false,
"text": "}"
},
{
"id": 2,
"logprob": 0.0,
"special": true,
"text": "</s>"
}
],
"top_tokens": null
},
"generated_text": "{\"firstName\":\"David\",\"lastName\":\"Holtz\",\"hobby\":\"Trees\",\"numCats\":2}"
}

View File

@ -0,0 +1,478 @@
[
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 1,
"logprob": null,
"text": "<s>"
},
{
"id": 1024,
"logprob": -10.578125,
"text": "name"
},
{
"id": 29901,
"logprob": -3.03125,
"text": ":"
},
{
"id": 13260,
"logprob": -9.171875,
"text": "dav"
},
{
"id": 333,
"logprob": -0.04244995,
"text": "id"
},
{
"id": 29889,
"logprob": -2.4863281,
"text": "."
},
{
"id": 4876,
"logprob": -10.7890625,
"text": "email"
},
{
"id": 29901,
"logprob": -0.32714844,
"text": ":"
},
{
"id": 259,
"logprob": -9.4921875,
"text": " "
}
],
"seed": null,
"tokens": [
{
"id": 29896,
"logprob": -0.7685547,
"special": false,
"text": "1"
},
{
"id": 29906,
"logprob": -0.2376709,
"special": false,
"text": "2"
},
{
"id": 29941,
"logprob": -0.01008606,
"special": false,
"text": "3"
},
{
"id": 29946,
"logprob": -0.64160156,
"special": false,
"text": "4"
},
{
"id": 29945,
"logprob": -0.5,
"special": false,
"text": "5"
},
{
"id": 29953,
"logprob": -0.46557617,
"special": false,
"text": "6"
},
{
"id": 29992,
"logprob": -0.5341797,
"special": false,
"text": "@"
},
{
"id": 21980,
"logprob": -0.5361328,
"special": false,
"text": "gmail"
},
{
"id": 29889,
"logprob": -0.00088739395,
"special": false,
"text": "."
},
{
"id": 510,
"logprob": -0.0022907257,
"special": false,
"text": "com"
}
],
"top_tokens": null
},
"generated_text": "123456@gmail.com"
},
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 1,
"logprob": null,
"text": "<s>"
},
{
"id": 1024,
"logprob": -10.578125,
"text": "name"
},
{
"id": 29901,
"logprob": -3.0332031,
"text": ":"
},
{
"id": 13260,
"logprob": -9.171875,
"text": "dav"
},
{
"id": 333,
"logprob": -0.04257202,
"text": "id"
},
{
"id": 29889,
"logprob": -2.4785156,
"text": "."
},
{
"id": 4876,
"logprob": -10.7890625,
"text": "email"
},
{
"id": 29901,
"logprob": -0.32495117,
"text": ":"
},
{
"id": 259,
"logprob": -9.4921875,
"text": " "
}
],
"seed": null,
"tokens": [
{
"id": 29896,
"logprob": -0.7709961,
"special": false,
"text": "1"
},
{
"id": 29906,
"logprob": -0.23840332,
"special": false,
"text": "2"
},
{
"id": 29941,
"logprob": -0.00995636,
"special": false,
"text": "3"
},
{
"id": 29946,
"logprob": -0.64208984,
"special": false,
"text": "4"
},
{
"id": 29945,
"logprob": -0.4970703,
"special": false,
"text": "5"
},
{
"id": 29953,
"logprob": -0.46533203,
"special": false,
"text": "6"
},
{
"id": 29992,
"logprob": -0.5336914,
"special": false,
"text": "@"
},
{
"id": 21980,
"logprob": -0.5361328,
"special": false,
"text": "gmail"
},
{
"id": 29889,
"logprob": -0.00088739395,
"special": false,
"text": "."
},
{
"id": 510,
"logprob": -0.0022735596,
"special": false,
"text": "com"
}
],
"top_tokens": null
},
"generated_text": "123456@gmail.com"
},
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 1,
"logprob": null,
"text": "<s>"
},
{
"id": 1024,
"logprob": -10.578125,
"text": "name"
},
{
"id": 29901,
"logprob": -3.0332031,
"text": ":"
},
{
"id": 13260,
"logprob": -9.171875,
"text": "dav"
},
{
"id": 333,
"logprob": -0.04257202,
"text": "id"
},
{
"id": 29889,
"logprob": -2.4785156,
"text": "."
},
{
"id": 4876,
"logprob": -10.7890625,
"text": "email"
},
{
"id": 29901,
"logprob": -0.32495117,
"text": ":"
},
{
"id": 259,
"logprob": -9.4921875,
"text": " "
}
],
"seed": null,
"tokens": [
{
"id": 29896,
"logprob": -0.7709961,
"special": false,
"text": "1"
},
{
"id": 29906,
"logprob": -0.23840332,
"special": false,
"text": "2"
},
{
"id": 29941,
"logprob": -0.00995636,
"special": false,
"text": "3"
},
{
"id": 29946,
"logprob": -0.64208984,
"special": false,
"text": "4"
},
{
"id": 29945,
"logprob": -0.4970703,
"special": false,
"text": "5"
},
{
"id": 29953,
"logprob": -0.46533203,
"special": false,
"text": "6"
},
{
"id": 29992,
"logprob": -0.5336914,
"special": false,
"text": "@"
},
{
"id": 21980,
"logprob": -0.5361328,
"special": false,
"text": "gmail"
},
{
"id": 29889,
"logprob": -0.00088739395,
"special": false,
"text": "."
},
{
"id": 510,
"logprob": -0.0022735596,
"special": false,
"text": "com"
}
],
"top_tokens": null
},
"generated_text": "123456@gmail.com"
},
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 1,
"logprob": null,
"text": "<s>"
},
{
"id": 1024,
"logprob": -10.578125,
"text": "name"
},
{
"id": 29901,
"logprob": -3.0332031,
"text": ":"
},
{
"id": 13260,
"logprob": -9.171875,
"text": "dav"
},
{
"id": 333,
"logprob": -0.04257202,
"text": "id"
},
{
"id": 29889,
"logprob": -2.4785156,
"text": "."
},
{
"id": 4876,
"logprob": -10.7890625,
"text": "email"
},
{
"id": 29901,
"logprob": -0.32495117,
"text": ":"
},
{
"id": 259,
"logprob": -9.4921875,
"text": " "
}
],
"seed": null,
"tokens": [
{
"id": 29896,
"logprob": -0.7709961,
"special": false,
"text": "1"
},
{
"id": 29906,
"logprob": -0.23840332,
"special": false,
"text": "2"
},
{
"id": 29941,
"logprob": -0.00995636,
"special": false,
"text": "3"
},
{
"id": 29946,
"logprob": -0.64208984,
"special": false,
"text": "4"
},
{
"id": 29945,
"logprob": -0.4970703,
"special": false,
"text": "5"
},
{
"id": 29953,
"logprob": -0.46533203,
"special": false,
"text": "6"
},
{
"id": 29992,
"logprob": -0.5336914,
"special": false,
"text": "@"
},
{
"id": 21980,
"logprob": -0.5361328,
"special": false,
"text": "gmail"
},
{
"id": 29889,
"logprob": -0.00088739395,
"special": false,
"text": "."
},
{
"id": 510,
"logprob": -0.0022735596,
"special": false,
"text": "com"
}
],
"top_tokens": null
},
"generated_text": "123456@gmail.com"
}
]

View File

@ -0,0 +1,109 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 1,
"logprob": null,
"text": "<s>"
},
{
"id": 806,
"logprob": -11.890625,
"text": "Wh"
},
{
"id": 1446,
"logprob": -3.6699219,
"text": "ats"
},
{
"id": 2921,
"logprob": -7.8203125,
"text": "Go"
},
{
"id": 468,
"logprob": -8.0703125,
"text": "og"
},
{
"id": 793,
"logprob": -2.1875,
"text": "les"
},
{
"id": 16332,
"logprob": -9.7109375,
"text": "DNS"
}
],
"seed": null,
"tokens": [
{
"id": 29946,
"logprob": -1.4765625,
"special": false,
"text": "4"
},
{
"id": 29906,
"logprob": -0.9199219,
"special": false,
"text": "2"
},
{
"id": 29889,
"logprob": 0.0,
"special": false,
"text": "."
},
{
"id": 29896,
"logprob": -1.1367188,
"special": false,
"text": "1"
},
{
"id": 29889,
"logprob": -1.4648438,
"special": false,
"text": "."
},
{
"id": 29896,
"logprob": -0.40722656,
"special": false,
"text": "1"
},
{
"id": 29889,
"logprob": -0.17419434,
"special": false,
"text": "."
},
{
"id": 29896,
"logprob": -0.20251465,
"special": false,
"text": "1"
},
{
"id": 29900,
"logprob": -1.5527344,
"special": false,
"text": "0"
},
{
"id": 29896,
"logprob": -1.3710938,
"special": false,
"text": "1"
}
],
"top_tokens": null
},
"generated_text": "42.1.1.101"
}

View File

@ -0,0 +1,73 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [],
"seed": null,
"tokens": [
{
"id": 29896,
"logprob": -0.7685547,
"special": false,
"text": "1"
},
{
"id": 29906,
"logprob": -0.33666992,
"special": false,
"text": "2"
},
{
"id": 29941,
"logprob": -0.009979248,
"special": false,
"text": "3"
},
{
"id": 29946,
"logprob": -0.64208984,
"special": false,
"text": "4"
},
{
"id": 29945,
"logprob": -0.4970703,
"special": false,
"text": "5"
},
{
"id": 29953,
"logprob": -0.46533203,
"special": false,
"text": "6"
},
{
"id": 29992,
"logprob": -0.5336914,
"special": false,
"text": "@"
},
{
"id": 21980,
"logprob": -0.53759766,
"special": false,
"text": "gmail"
},
{
"id": 29889,
"logprob": -0.0008878708,
"special": false,
"text": "."
},
{
"id": 510,
"logprob": -0.002275467,
"special": false,
"text": "com"
}
],
"top_tokens": null
},
"generated_text": "123456@gmail.com"
}

View File

@ -0,0 +1,151 @@
import pytest
import json
from text_generation.types import GrammarType
@pytest.fixture(scope="module")
def flash_llama_grammar_handle(launcher):
with launcher(
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", num_shard=2, disable_grammar_support=False
) as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_llama_grammar(flash_llama_grammar_handle):
await flash_llama_grammar_handle.health(300)
return flash_llama_grammar_handle.client
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_grammar(flash_llama_grammar, response_snapshot):
response = await flash_llama_grammar.generate(
"Test request", max_new_tokens=10, decoder_input_details=True
)
assert response.details.generated_tokens == 10
assert response == response_snapshot
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_grammar_regex(flash_llama_grammar, response_snapshot):
response = await flash_llama_grammar.generate(
"Whats Googles DNS",
max_new_tokens=10,
decoder_input_details=True,
seed=0,
grammar={
"type": GrammarType.Regex, # "regex"
"value": "((25[0-5]|2[0-4]\\d|[01]?\\d\\d?)\\.){3}(25[0-5]|2[0-4]\\d|[01]?\\d\\d?)",
},
)
assert response.details.generated_tokens == 10
assert response.generated_text == "42.1.1.101"
assert response == response_snapshot
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_grammar_json(flash_llama_grammar, response_snapshot):
response = await flash_llama_grammar.generate(
"info: david holtz like trees and has two cats. ",
max_new_tokens=100,
decoder_input_details=True,
seed=0,
grammar={
"type": GrammarType.Json, # "json"
"value": json.dumps(
{
"type": "object",
"$id": "https://example.com/person.schema.json",
"$schema": "https://json-schema.org/draft/2020-12/schema",
"title": "Person",
"properties": {
"firstName": {
"type": "string",
"description": "The person'''s first name.",
},
"lastName": {
"type": "string",
"description": "The person'''s last name.",
},
"hobby": {
"description": "The person'''s hobby.",
"type": "string",
},
"numCats": {
"description": "The number of cats the person has.",
"type": "integer",
"minimum": 0,
},
},
"required": ["firstName", "lastName", "hobby", "numCats"],
}
),
},
)
assert response.details.generated_tokens == 30
assert (
response.generated_text
== '{"firstName":"David","lastName":"Holtz","hobby":"Trees","numCats":2}'
)
assert response == response_snapshot
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_grammar_load(
flash_llama_grammar, generate_load, response_snapshot
):
responses = await generate_load(
flash_llama_grammar,
"name: david. email: ",
max_new_tokens=10,
n=4,
stop_sequences=[".com"],
seed=0,
grammar={
"type": GrammarType.Regex, # "regex"
"value": "[\\w-]+@([\\w-]+\\.)+[\\w-]+", # email regex
},
)
assert len(responses) == 4
expected = "123456@gmail.com"
for response in responses:
assert response.generated_text == expected
assert all([r.generated_text == responses[0].generated_text for r in responses])
assert responses == response_snapshot
# this is the same as the above test, but only fires off a single request
# this is only to ensure that the parallel and single inference produce the same result
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_grammar_single_load_instance(
flash_llama_grammar, generate_load, response_snapshot
):
response = await flash_llama_grammar.generate(
"name: david. email: ",
max_new_tokens=10,
stop_sequences=[".com"],
seed=0,
grammar={
"type": GrammarType.Regex, # "regex"
"value": "[\\w-]+@([\\w-]+\\.)+[\\w-]+", # email regex
},
)
# assert response.details.generated_tokens == 30
assert response.generated_text == "123456@gmail.com"
assert response == response_snapshot

View File

@ -382,6 +382,11 @@ struct Args {
#[clap(long, env)]
tokenizer_config_path: Option<String>,
/// Disable outlines grammar constrained generation.
/// This is a feature that allows you to generate text that follows a specific grammar.
#[clap(long, env)]
disable_grammar_support: bool,
/// Display a lot of information about your runtime environment
#[clap(long, short, action)]
env: bool,
@ -1051,6 +1056,11 @@ fn spawn_webserver(
args.model_id,
];
// Grammar support
if args.disable_grammar_support {
router_args.push("--disable-grammar-support".to_string());
}
// Tokenizer config path
if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
router_args.push("--tokenizer-config-path".to_string());

View File

@ -51,6 +51,12 @@ message ClearCacheRequest {
/// Empty response
message ClearCacheResponse {}
enum GrammarType {
GRAMMAR_TYPE_NONE = 0;
GRAMMAR_TYPE_JSON = 1;
GRAMMAR_TYPE_REGEX = 2;
}
message NextTokenChooserParameters {
/// exponential scaling output probability distribution
float temperature = 1;
@ -70,6 +76,10 @@ message NextTokenChooserParameters {
float frequency_penalty = 9;
/// token watermarking using "A Watermark for Large Language Models"
bool watermark = 8;
/// grammar (applied if not empty)
string grammar = 10;
/// grammar type
GrammarType grammar_type = 11;
}
message StoppingCriteriaParameters {

View File

@ -128,6 +128,8 @@ impl Client {
repetition_penalty: 1.2,
frequency_penalty: 0.1,
watermark: true,
grammar: String::new(),
grammar_type: GrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: max_total_tokens - truncate,

View File

@ -9,8 +9,8 @@ pub use client::Client;
pub use pb::generate::v2::HealthResponse;
pub use pb::generate::v2::InfoResponse as ShardInfo;
pub use pb::generate::v2::{
Batch, CachedBatch, FinishReason, GeneratedText, Generation, NextTokenChooserParameters,
Request, StoppingCriteriaParameters, Tokens,
Batch, CachedBatch, FinishReason, GeneratedText, Generation, GrammarType,
NextTokenChooserParameters, Request, StoppingCriteriaParameters, Tokens,
};
pub use sharded_client::ShardedClient;
use thiserror::Error;

View File

@ -1,5 +1,6 @@
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use text_generation_client::GrammarType as ProtoGrammarType;
use text_generation_client::{
Batch, NextTokenChooserParameters, Request, ShardedClient, StoppingCriteriaParameters,
};
@ -45,6 +46,8 @@ impl Health {
repetition_penalty: 1.0,
frequency_penalty: 0.0,
watermark: false,
grammar: String::new(),
grammar_type: ProtoGrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: 1,

View File

@ -45,6 +45,43 @@ impl HubTokenizerConfig {
}
}
mod json_object_or_string_to_string {
use serde::{Deserialize, Deserializer};
use serde_json::Value;
// A custom deserializer that treats both strings and objects as strings.
// This provides flexibility with input formats for the 'grammar' field.
pub fn deserialize<'de, D>(deserializer: D) -> Result<String, D::Error>
where
D: Deserializer<'de>,
{
let value = Value::deserialize(deserializer)?;
match value {
Value::String(s) => Ok(s),
// Safely handle serialization and return an error if it fails
Value::Object(o) => {
serde_json::to_string(&o).map_err(|e| serde::de::Error::custom(e.to_string()))
}
_ => Err(serde::de::Error::custom(
"expected string or object for grammar",
)),
}
}
}
#[derive(Clone, Debug, Deserialize)]
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
#[serde(
rename = "json",
deserialize_with = "json_object_or_string_to_string::deserialize"
)]
Json(String),
#[serde(rename = "regex")]
Regex(String),
}
mod token_serde {
use super::*;
use serde::de;
@ -201,6 +238,8 @@ pub(crate) struct GenerateParameters {
#[serde(default)]
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
pub top_n_tokens: Option<u32>,
#[serde(default)]
pub grammar: Option<GrammarType>,
}
fn default_max_new_tokens() -> Option<u32> {
@ -226,6 +265,7 @@ fn default_parameters() -> GenerateParameters {
decoder_input_details: false,
seed: None,
top_n_tokens: None,
grammar: None,
}
}

View File

@ -75,6 +75,8 @@ struct Args {
ngrok_edge: Option<String>,
#[clap(long, env, default_value_t = false)]
messages_api_enabled: bool,
#[clap(long, env, default_value_t = false)]
disable_grammar_support: bool,
}
#[tokio::main]
@ -108,6 +110,7 @@ async fn main() -> Result<(), RouterError> {
ngrok_authtoken,
ngrok_edge,
messages_api_enabled,
disable_grammar_support,
} = args;
// Launch Tokio runtime
@ -359,6 +362,7 @@ async fn main() -> Result<(), RouterError> {
ngrok_edge,
tokenizer_config,
messages_api_enabled,
disable_grammar_support,
)
.await?;
Ok(())

View File

@ -343,7 +343,9 @@ enum QueueCommand {
#[cfg(test)]
mod tests {
use super::*;
use text_generation_client::{NextTokenChooserParameters, StoppingCriteriaParameters};
use text_generation_client::{
GrammarType as ProtoGrammarType, NextTokenChooserParameters, StoppingCriteriaParameters,
};
use tracing::info_span;
fn default_entry() -> (
@ -354,7 +356,7 @@ mod tests {
let entry = Entry {
request: ValidGenerateRequest {
inputs: "".to_string(),
inputs: String::new(),
input_length: 0,
truncate: 0,
decoder_input_details: false,
@ -368,6 +370,8 @@ mod tests {
repetition_penalty: 0.0,
frequency_penalty: 0.0,
watermark: false,
grammar: String::new(),
grammar_type: ProtoGrammarType::None as i32,
},
stopping_parameters: StoppingCriteriaParameters {
ignore_eos_token: false,

View File

@ -614,6 +614,7 @@ async fn chat_completions(
decoder_input_details: !stream,
seed,
top_n_tokens: None,
grammar: None,
},
};
@ -779,6 +780,7 @@ pub async fn run(
ngrok_edge: Option<String>,
tokenizer_config: HubTokenizerConfig,
messages_api_enabled: bool,
grammar_support: bool,
) -> Result<(), axum::BoxError> {
// OpenAPI documentation
#[derive(OpenApi)]
@ -840,6 +842,7 @@ pub async fn run(
max_top_n_tokens,
max_input_length,
max_total_tokens,
grammar_support,
);
let generation_health = Arc::new(AtomicBool::new(false));
let health_ext = Health::new(client.clone(), generation_health.clone());

View File

@ -1,8 +1,10 @@
/// Payload validation logic
use crate::validation::ValidationError::{BestOfSampling, BestOfSeed, EmptyInput};
use crate::{GenerateParameters, GenerateRequest};
use crate::{GenerateParameters, GenerateRequest, GrammarType};
use rand::{thread_rng, Rng};
use text_generation_client::{NextTokenChooserParameters, StoppingCriteriaParameters};
use text_generation_client::{
GrammarType as ProtoGrammarType, NextTokenChooserParameters, StoppingCriteriaParameters,
};
use thiserror::Error;
use tokenizers::tokenizer::Tokenizer;
use tokenizers::TruncationDirection;
@ -19,6 +21,7 @@ pub struct Validation {
max_top_n_tokens: u32,
max_input_length: usize,
max_total_tokens: usize,
disable_grammar_support: bool,
/// Channel to communicate with the background tokenization task
sender: Option<mpsc::UnboundedSender<TokenizerRequest>>,
}
@ -32,6 +35,7 @@ impl Validation {
max_top_n_tokens: u32,
max_input_length: usize,
max_total_tokens: usize,
disable_grammar_support: bool,
) -> Self {
// If we have a fast tokenizer
let sender = if let Some(tokenizer) = tokenizer {
@ -66,6 +70,7 @@ impl Validation {
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
}
}
@ -182,6 +187,7 @@ impl Validation {
watermark,
decoder_input_details,
top_n_tokens,
grammar,
..
} = request.parameters;
@ -292,6 +298,28 @@ impl Validation {
.validate_input(request.inputs, truncate, max_new_tokens)
.await?;
// TODO: we should build the FSM here and pass the compiled FSM instead of the grammar
// NOTE: this is currently difficult because we need the tokenizer in Python to build
// the FSM and we'd have to load a copy of the tokenizer into our Pyo3 instance which
// may be slow and memory intensive. Best case is to have a Rust implementation of the FSM
// compiler and use that to build the FSM here.
// Validate grammar and unpack the grammar and type for the proto message
let (grammar, grammar_type) = match grammar {
Some(grammar) => {
// Ensure that grammar is not set if it's not supported
if self.disable_grammar_support {
return Err(ValidationError::Grammar);
}
match grammar {
// currently both are handled the same way since compilation is done in Python
GrammarType::Json(json) => (json, ProtoGrammarType::Json.into()),
GrammarType::Regex(regex) => (regex, ProtoGrammarType::Regex.into()),
}
}
None => (String::new(), ProtoGrammarType::None.into()),
};
let parameters = NextTokenChooserParameters {
temperature,
repetition_penalty,
@ -302,6 +330,8 @@ impl Validation {
do_sample,
seed,
watermark,
grammar,
grammar_type,
};
let stopping_parameters = StoppingCriteriaParameters {
max_new_tokens,
@ -453,6 +483,8 @@ pub enum ValidationError {
StopSequence(usize, usize),
#[error("tokenizer error {0}")]
Tokenizer(String),
#[error("grammar is not supported")]
Grammar,
}
#[cfg(test)]
@ -470,6 +502,7 @@ mod tests {
let max_input_length = 5;
let max_total_tokens = 6;
let workers = 1;
let disable_grammar_support = true;
let validation = Validation::new(
workers,
tokenizer,
@ -478,6 +511,7 @@ mod tests {
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
let max_new_tokens = 10;
@ -498,6 +532,7 @@ mod tests {
let max_top_n_tokens = 4;
let max_input_length = 5;
let max_total_tokens = 6;
let disable_grammar_support = true;
let workers = 1;
let validation = Validation::new(
workers,
@ -507,6 +542,7 @@ mod tests {
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
let max_new_tokens = 10;
@ -528,6 +564,7 @@ mod tests {
let max_input_length = 5;
let max_total_tokens = 6;
let workers = 1;
let disable_grammar_support = true;
let validation = Validation::new(
workers,
tokenizer,
@ -536,6 +573,7 @@ mod tests {
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
match validation
.validate(GenerateRequest {
@ -562,6 +600,7 @@ mod tests {
let max_input_length = 5;
let max_total_tokens = 106;
let workers = 1;
let disable_grammar_support = true;
let validation = Validation::new(
workers,
tokenizer,
@ -570,6 +609,7 @@ mod tests {
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
match validation
.validate(GenerateRequest {
@ -625,6 +665,7 @@ mod tests {
let max_input_length = 5;
let max_total_tokens = 106;
let workers = 1;
let disable_grammar_support = true;
let validation = Validation::new(
workers,
tokenizer,
@ -633,6 +674,7 @@ mod tests {
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
match validation
.validate(GenerateRequest {

View File

@ -34,6 +34,7 @@ peft = { version = "^0.8.2", optional = true }
torch = { version = "^2.1.1", optional = true }
scipy = "^1.11.1"
pillow = "^10.0.0"
outlines="^0.0.27"
[tool.poetry.extras]
torch = ["torch"]

View File

@ -87,7 +87,9 @@ class CausalLMBatch(Batch):
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
next_token_choosers.append(
NextTokenChooser.from_pb(r.parameters, device, tokenizer)
)
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
@ -413,14 +415,14 @@ class CausalLMBatch(Batch):
# We slice the keys to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
if batch.keys_head_dim_last:
padded_past_keys[
start_index:end_index, :, -past_seq_len:, :
] = past_keys[:, :, -past_seq_len:, :]
padded_past_keys[start_index:end_index, :, -past_seq_len:, :] = (
past_keys[:, :, -past_seq_len:, :]
)
else:
# BLOOM case
padded_past_keys[
start_index:end_index, :, :, -past_seq_len:
] = past_keys[:, :, :, -past_seq_len:]
padded_past_keys[start_index:end_index, :, :, -past_seq_len:] = (
past_keys[:, :, :, -past_seq_len:]
)
del past_keys
start_index = end_index
@ -438,9 +440,9 @@ class CausalLMBatch(Batch):
end_index = start_index + len(batch)
# We slice the past values to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
padded_past_values[
start_index:end_index, :, -past_seq_len:, :
] = past_values[:, :, -past_seq_len:, :]
padded_past_values[start_index:end_index, :, -past_seq_len:, :] = (
past_values[:, :, -past_seq_len:, :]
)
del past_values
# Update values
@ -504,9 +506,11 @@ class CausalLM(Model):
model_id,
revision=revision,
torch_dtype=dtype,
device_map="auto"
if torch.cuda.is_available() and torch.cuda.device_count() > 1
else None,
device_map=(
"auto"
if torch.cuda.is_available() and torch.cuda.device_count() > 1
else None
),
load_in_8bit=quantize == "bitsandbytes",
trust_remote_code=trust_remote_code,
)
@ -696,7 +700,7 @@ class CausalLM(Model):
if top_n_tokens > 0:
all_top_tokens = []
for (top_token_ids, top_token_logprobs) in zip(
for top_token_ids, top_token_logprobs in zip(
top_token_ids, top_token_logprobs
):
toptoken_texts = self.tokenizer.batch_decode(
@ -735,6 +739,9 @@ class CausalLM(Model):
generations.append(generation)
# Update values
batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar(
next_token_id_squeezed.item()
)
batch.input_ids[i, 0] = next_token_id
batch.all_input_ids[i] = all_input_ids
batch.input_lengths[i] = new_input_length

View File

@ -237,7 +237,7 @@ class FlashCausalLMBatch(Batch):
)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype, device
next_token_chooser_parameters, dtype, device, tokenizer
)
start_slots = torch.tensor(start_slots, dtype=torch.int64)
@ -593,6 +593,7 @@ class FlashCausalLMBatch(Batch):
next_token_chooser_parameters,
dtype=batches[0].next_token_chooser.dtype,
device=batches[0].next_token_chooser.device,
tokenizer=batches[0].next_token_chooser.tokenizer,
)
speculative_ids = (
@ -869,7 +870,11 @@ class FlashCausalLM(Model):
# Try to find an associated cuda graph
cuda_graph = self.cuda_graphs.get(padded_bs, None)
if cu_seqlen_prefill is not None or cuda_graph is None or batch.speculative_ids is not None:
if (
cu_seqlen_prefill is not None
or cuda_graph is None
or batch.speculative_ids is not None
):
return self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
@ -1013,9 +1018,9 @@ class FlashCausalLM(Model):
# Copy batch.input_ids to prefill_token_indices
if prefill_logprobs:
if len(batch) > 1:
prefill_tokens_indices[
out_start_index : out_end_index - 1
] = batch.input_ids[start_index + 1 : start_index + out_length]
prefill_tokens_indices[out_start_index : out_end_index - 1] = (
batch.input_ids[start_index + 1 : start_index + out_length]
)
else:
# Set prefill_tokens_indices to the correct slice
prefill_tokens_indices = batch.input_ids[
@ -1028,6 +1033,7 @@ class FlashCausalLM(Model):
cumulative_length += input_length
# Update values
batch.input_ids = next_input_ids[accepted_ids.cumsum(dim=-1) - 1]
batch.speculative_ids = speculative_ids
batch.position_ids = next_position_ids + accepted_ids
@ -1166,7 +1172,7 @@ class FlashCausalLM(Model):
if top_n_tokens > 0:
all_top_tokens = []
for (top_token_ids, top_token_logprobs) in zip(
for top_token_ids, top_token_logprobs in zip(
top_token_ids, top_token_logprobs
):
toptoken_texts = self.tokenizer.batch_decode(
@ -1204,6 +1210,12 @@ class FlashCausalLM(Model):
generations.append(generation)
# accept each new token for this specific request since we may
# have more than one new token per request with speculative decoding
for next_token_id in _next_token_ids:
batch.next_token_chooser = batch.next_token_chooser.advance_grammar_single(i, next_token_id)
# Update values
batch.input_lengths[i] = input_length + n_accepted_ids
if batch.input_lengths[i] > batch.max_seqlen:

View File

@ -192,7 +192,7 @@ class FlashMistralBatch(FlashCausalLMBatch):
)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype, device
next_token_chooser_parameters, dtype, device, tokenizer
)
start_slots = torch.tensor(start_slots, dtype=torch.int64)

View File

@ -92,7 +92,7 @@ class GalacticaCausalLMBatch(CausalLMBatch):
requests_idx_mapping[r.id] = i
# Add escape_custom_split_sequence to the CausalLMBatch logic
inputs.append(escape_custom_split_sequence(r.inputs))
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device, tokenizer))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)

View File

@ -114,7 +114,7 @@ class IdeficsCausalLMBatch(Batch):
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device, tokenizer))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
@ -815,6 +815,9 @@ class IdeficsCausalLM(Model):
generations.append(generation)
# Update values
batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar(
next_token_id_squeezed.item()
)
batch.input_ids[i, 0] = next_token_id
batch.all_input_ids[i] = all_input_ids
batch.input_lengths[i] = new_input_length

View File

@ -124,7 +124,7 @@ class MambaBatch(Batch):
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device, tokenizer))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
@ -694,6 +694,9 @@ class Mamba(Model):
generations.append(generation)
# Update values
batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar(
next_token_id_squeezed.item()
)
batch.input_ids[i, 0] = next_token_id
batch.all_input_ids[i] = all_input_ids
batch.input_lengths[i] = new_input_length

View File

@ -96,7 +96,7 @@ class Seq2SeqLMBatch(Batch):
inputs.append(r.inputs)
requests_idx_mapping[r.id] = i
decoder_input_lengths.append(1)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device, tokenizer))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
@ -789,6 +789,9 @@ class Seq2SeqLM(Model):
generations.append(generation)
# Update values
batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar(
next_token_id_squeezed.item()
)
batch.decoder_input_ids[i] = next_token_id
batch.all_decoder_input_ids[i] = all_decoder_input_ids
batch.input_lengths[i] = input_length

View File

@ -1,8 +1,17 @@
import math
import torch
import json
from loguru import logger
from functools import lru_cache
from typing import Optional, List, Dict, Union
from text_generation_server.pb.generate_pb2 import GrammarType
from outlines.fsm.fsm import RegexFSM
from outlines.fsm.json_schema import build_regex_from_object
from functools import lru_cache
from typing import List, Optional, DefaultDict
import time
from transformers import (
LogitsWarper,
@ -135,9 +144,7 @@ class FrequencyPenaltyLogitsProcessor(LogitsProcessor):
) -> torch.FloatTensor:
score = torch.gather(scores, 1, input_ids)
# if score < 0 then penalty has to be multiplied to reduce the previous token probability
score = -torch.where(
score < 0, score * self.penalty, score / self.penalty
)
score = -torch.where(score < 0, score * self.penalty, score / self.penalty)
return scores.scatter_add_(1, input_ids, score)
@ -464,3 +471,132 @@ class HeterogeneousProcessorWrapper(LogitsProcessor):
self.processors = new_processors
return self
return None
class GrammarLogitProcessor(LogitsProcessor):
fsm_state: DefaultDict[int, int]
fsm: RegexFSM
def __init__(self, tokenizer, device, grammar, grammar_type):
self.device = device
self.tokenizer = GrammarLogitProcessor._cached_adapt_tokenizer(tokenizer)
self.fsm = GrammarLogitProcessor._cached_compile_fsm(
grammar_type, grammar, self.tokenizer
)
def __call__(
self,
logits: torch.Tensor,
fsm_grammar_state: int,
):
if fsm_grammar_state == -1 or self.fsm is None:
return logits
allowed_tokens = self.fsm.allowed_token_ids(fsm_grammar_state)
mask = torch.full((logits.shape[-1],), -math.inf, device=self.device)
mask[allowed_tokens] = 0
biased_scores = logits + mask
return biased_scores
def advance(self, next_token_id, fsm_grammar_state):
return GrammarLogitProcessor._advance(
next_token_id, fsm_grammar_state, self.fsm
)
@staticmethod
def _advance(next_token_id, fsm_grammar_state, fsm):
if fsm_grammar_state == -1:
return fsm_grammar_state
return fsm.next_state(fsm_grammar_state, next_token_id)
# TODO: move grammar compilation into the router
@staticmethod
@lru_cache(maxsize=32, typed=True)
def _cached_compile_fsm(grammar_type, schema, tokenizer):
start_time = time.time()
if grammar_type == GrammarType.GRAMMAR_TYPE_JSON:
schema = build_regex_from_object(schema)
elif grammar_type == GrammarType.GRAMMAR_TYPE_REGEX:
pass # schema is already a regex just here for clarity
fsm = RegexFSM(schema, tokenizer)
logger.debug(f"Compiled FSM in {time.time() - start_time:.2f}s")
return fsm
@staticmethod
@lru_cache(maxsize=32, typed=True)
def _cached_adapt_tokenizer(tokenizer):
"""Adapt tokenizer to work with the FSM.
The API of Outlines tokenizers is slightly different to that of
`transformers`. In addition we need to handle the missing spaces to
Llama's tokenizer to be able to compile FSMs for this model.
"""
start_time = time.time()
tokenizer.vocabulary = tokenizer.get_vocab()
tokenizer.special_tokens = set(tokenizer.all_special_tokens)
def convert_token_to_string(token: str) -> str:
from transformers.file_utils import SPIECE_UNDERLINE
string = tokenizer.convert_tokens_to_string([token])
# A hack to handle missing spaces to HF's Llama tokenizers
if token.startswith(SPIECE_UNDERLINE) or token == "<0x20>":
return " " + string
return string
tokenizer.convert_token_to_string = convert_token_to_string
logger.debug(f"Adapted tokenizer in {time.time() - start_time:.2f}s")
return tokenizer
def filter(self, indices):
new_fsms = []
for i in indices:
new_fsms.append(self.fsms[i])
self.fsms = new_fsms
return self
class HeterogeneousGrammarLogitProcessor(LogitsProcessor):
def __init__(self, tokenizer, device, grammars, grammar_type):
self.device = device
self.tokenizer = GrammarLogitProcessor._cached_adapt_tokenizer(tokenizer)
self.fsms = []
for i in range(len(grammars)):
fsm = GrammarLogitProcessor._cached_compile_fsm(
grammar_type[i], grammars[i], self.tokenizer
)
self.fsms.append(fsm)
def __call__(
self,
logits: torch.Tensor,
fsm_grammar_states: List[int],
mask: torch.Tensor,
):
mask = torch.full_like(logits, -math.inf)
for i in range(logits.shape[0]):
fsm = self.fsms[i]
if fsm_grammar_states[i] == -1 or fsm is None:
continue
allowed_tokens = fsm.allowed_token_ids(fsm_grammar_states[i])
mask[i, allowed_tokens] = 0
logits += mask
return logits
def advance_batch(self, next_token_ids, fsm_grammar_states, grammars):
return [
GrammarLogitProcessor._advance(
next_token_ids[i], fsm_grammar_states[i], self.fsms[i]
)
for i in range(len(next_token_ids))
]
def advance_at_index(self, next_token_id, fsm_grammar_state, index):
return GrammarLogitProcessor._advance(
next_token_id, fsm_grammar_state, self.fsms[index]
)
def filter(self, indices):
return GrammarLogitProcessor.filter(self, indices)

View File

@ -1,11 +1,13 @@
import re
from typing import List, Optional, Tuple
import math
import torch
from text_generation_server.pb import generate_pb2
from text_generation_server.pb.generate_pb2 import FinishReason
from text_generation_server.pb.generate_pb2 import FinishReason, GrammarType
from text_generation_server.utils.logits_process import (
FrequencyPenaltyLogitsProcessor,
GrammarLogitProcessor,
HeterogeneousProcessorWrapper,
HeterogeneousRepetitionPenaltyLogitsProcessor,
HeterogeneousFrequencyPenaltyLogitsProcessor,
@ -13,6 +15,7 @@ from text_generation_server.utils.logits_process import (
HeterogeneousTopKLogitsWarper,
HeterogeneousTopPLogitsWarper,
HeterogeneousTypicalLogitsWarper,
HeterogeneousGrammarLogitProcessor,
static_warper,
)
from text_generation_server.utils.watermark import WatermarkLogitsProcessor
@ -22,16 +25,20 @@ from transformers import PreTrainedTokenizerBase, RepetitionPenaltyLogitsProcess
class NextTokenChooser:
def __init__(
self,
watermark=False,
temperature=1.0,
repetition_penalty=1.0,
frequency_penalty=0.0,
top_k=None,
top_p=None,
typical_p=None,
do_sample=False,
seed=0,
device="cpu",
watermark: bool = False,
temperature: float = 1.0,
repetition_penalty: float = 1.0,
frequency_penalty: float = 0.0,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
typical_p: Optional[float] = None,
do_sample: bool = False,
seed: int = 0,
device: str = "cpu",
tokenizer: Optional[PreTrainedTokenizerBase] = None,
grammar: str = "",
grammar_type: GrammarType = GrammarType.GRAMMAR_TYPE_NONE,
fsm_grammar_state: int = 0,
):
self.watermark_processor = (
WatermarkLogitsProcessor(device=device) if watermark else None
@ -46,6 +53,12 @@ class NextTokenChooser:
if frequency_penalty and frequency_penalty != 0.0
else None
)
self.grammar_processor = (
GrammarLogitProcessor(tokenizer, device, grammar, grammar_type)
if grammar != ""
else None
)
self.tokenizer = tokenizer
has_warpers = (
(temperature is not None and temperature != 1.0)
@ -61,7 +74,10 @@ class NextTokenChooser:
self.static_warper = None
sampling = do_sample or has_warpers
self.choice = Sampling(seed, device) if sampling else Greedy()
self.fsm_grammar_state = fsm_grammar_state
self.grammar = grammar
def __call__(self, input_ids, scores):
if self.watermark_processor is not None:
@ -70,6 +86,8 @@ class NextTokenChooser:
scores = self.repetition_processor(input_ids, scores)
if self.frequency_processor is not None:
scores = self.frequency_processor(input_ids, scores)
if self.grammar_processor is not None:
scores = self.grammar_processor(scores, self.fsm_grammar_state)
if self.static_warper is None:
next_logprob = torch.log_softmax(scores, -1)
@ -80,11 +98,19 @@ class NextTokenChooser:
return next_id, next_logprob
def advance_grammar(self, next_id: int):
if self.grammar_processor is not None:
self.fsm_grammar_state = self.grammar_processor.advance(
next_id, self.fsm_grammar_state
)
return self
@classmethod
def from_pb(
cls,
pb: generate_pb2.NextTokenChooserParameters,
device: torch.device,
tokenizer: PreTrainedTokenizerBase,
) -> "NextTokenChooser":
return NextTokenChooser(
watermark=pb.watermark,
@ -97,6 +123,9 @@ class NextTokenChooser:
do_sample=pb.do_sample,
seed=pb.seed,
device=device,
tokenizer=tokenizer,
grammar=pb.grammar,
grammar_type=pb.grammar_type,
)
@ -201,6 +230,10 @@ class HeterogeneousNextTokenChooser:
typical_p: List[float],
do_sample: List[bool],
seeds: List[int],
tokenizer: PreTrainedTokenizerBase,
grammars: List[str],
grammar_types: List[int],
fsm_grammar_states=List[int],
):
warpers = []
@ -232,6 +265,14 @@ class HeterogeneousNextTokenChooser:
else None
)
self.grammar_processor = (
HeterogeneousGrammarLogitProcessor(
tokenizer, device, grammars, grammar_types
)
if any([grammar != "" for grammar in grammars])
else None
)
if any([x != 1.0 for x in temperature]):
do_sample = [
sample or x != 1.0 for x, sample in zip(temperature, do_sample)
@ -263,6 +304,10 @@ class HeterogeneousNextTokenChooser:
self.do_sample = do_sample
self.dtype = dtype
self.device = device
self.tokenizer = tokenizer
self.fsm_grammar_states = fsm_grammar_states
self.grammars = grammars
self.grammar_types = grammar_types
def __call__(
self,
@ -283,6 +328,8 @@ class HeterogeneousNextTokenChooser:
scores = scores.view(B, S, -1)
next_ids = torch.zeros((B, S), device=scores.device, dtype=torch.long)
mask = torch.full((scores.shape[-1],), -math.inf, device=self.device)
for j in range(S):
_scores = scores[:, j]
if self.watermark_processor is not None:
@ -291,10 +338,10 @@ class HeterogeneousNextTokenChooser:
_scores = self.repetition_processor(input_ids, _scores)
if self.frequency_processor is not None:
_scores = self.frequency_processor(input_ids, _scores)
for warper in self.warpers:
_scores = warper(input_ids, _scores)
if self.grammar_processor is not None:
_scores = self.grammar_processor(_scores, self.fsm_grammar_states, mask)
_next_ids = self.choice(_scores)
scores[:, j] = _scores
next_ids[:, j] = _next_ids
@ -352,6 +399,21 @@ class HeterogeneousNextTokenChooser:
return next_ids, next_logprobs, alllogprobs, accepted_ids, speculative_ids
def advance_grammar(self, next_ids: List[int]):
if self.grammar_processor is not None:
other_new_states = self.grammar_processor.advance_batch(
next_ids, self.fsm_grammar_states, self.grammars
)
self.fsm_grammar_states = other_new_states
return self
def advance_grammar_single(self, grammar_state_index: int, next_id: int):
if self.grammar_processor is not None:
self.fsm_grammar_states[grammar_state_index] = self.grammar_processor.advance_at_index(
next_id, self.fsm_grammar_states[grammar_state_index], grammar_state_index
)
return self
def filter(self, indices):
if self.watermark_processor is not None:
self.watermark_processor = self.watermark_processor.filter(indices)
@ -362,6 +424,9 @@ class HeterogeneousNextTokenChooser:
if self.frequency_processor is not None:
self.frequency_processor = self.frequency_processor.filter(indices)
if self.grammar_processor is not None:
self.grammar_processor = self.grammar_processor.filter(indices)
filtered_warpers = []
for warper in self.warpers:
filtered_warper = warper.filter(indices)
@ -372,6 +437,18 @@ class HeterogeneousNextTokenChooser:
self.seeds = [self.seeds[i] for i in indices]
self.do_sample = [self.do_sample[i] for i in indices]
new_grammars = []
new_fsm_grammar_states = []
new_grammar_types = []
for i in indices:
new_grammars.append(self.grammars[i])
new_fsm_grammar_states.append(self.fsm_grammar_states[i])
new_grammar_types.append(self.grammar_types[i])
self.grammars = new_grammars
self.fsm_grammar_states = new_fsm_grammar_states
self.grammar_types = new_grammar_types
if any(self.do_sample):
self.choice.filter(indices)
else:
@ -385,6 +462,7 @@ class HeterogeneousNextTokenChooser:
pb: List[generate_pb2.NextTokenChooserParameters],
dtype: torch.dtype,
device: torch.device,
tokenizer: PreTrainedTokenizerBase,
) -> "HeterogeneousNextTokenChooser":
return HeterogeneousNextTokenChooser(
watermark=[pb_.watermark for pb_ in pb],
@ -398,6 +476,10 @@ class HeterogeneousNextTokenChooser:
seeds=[pb_.seed for pb_ in pb],
device=device,
dtype=dtype,
tokenizer=tokenizer,
grammars=[pb_.grammar for pb_ in pb],
grammar_types=[pb_.grammar_type for pb_ in pb],
fsm_grammar_states=[0] * len(pb),
)