From cff472ba2b9147015ffd005aace282481d489695 Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Fri, 24 May 2024 12:40:39 +0200 Subject: [PATCH] Fixing codellama loads by using purely `AutoTokenizer`. (#1947) - The need for the slow tokenizer default stems from back when llama 1 was introduced and all the flags where not supported in `tokenizers`. - Fixes #1891 # What does this PR do? Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. --- .../models/flash_llama.py | 24 ++++++------------- 1 file changed, 7 insertions(+), 17 deletions(-) diff --git a/server/text_generation_server/models/flash_llama.py b/server/text_generation_server/models/flash_llama.py index 796fbd47..9a7dfaee 100644 --- a/server/text_generation_server/models/flash_llama.py +++ b/server/text_generation_server/models/flash_llama.py @@ -3,7 +3,6 @@ import torch.distributed from opentelemetry import trace from transformers import AutoConfig, AutoTokenizer, GenerationConfig -from transformers.models.llama import LlamaTokenizer from typing import Optional from text_generation_server.models import FlashCausalLM @@ -41,22 +40,13 @@ class FlashLlama(FlashCausalLM): else: raise NotImplementedError("FlashLlama is only available on GPU") - try: - tokenizer = LlamaTokenizer.from_pretrained( - model_id, - revision=revision, - padding_side="left", - truncation_side="left", - trust_remote_code=trust_remote_code, - ) - except Exception: - tokenizer = AutoTokenizer.from_pretrained( - model_id, - revision=revision, - padding_side="left", - truncation_side="left", - trust_remote_code=trust_remote_code, - ) + tokenizer = AutoTokenizer.from_pretrained( + model_id, + revision=revision, + padding_side="left", + truncation_side="left", + trust_remote_code=trust_remote_code, + ) try: generation_config = GenerationConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code