fix: fix gpt-q with groupsize = -1 (#1358)
This commit is contained in:
parent
8428ed1011
commit
d077150eb7
|
@ -213,6 +213,9 @@ message DecodeResponse {
|
||||||
message WarmupRequest {
|
message WarmupRequest {
|
||||||
/// Batch to warmup on
|
/// Batch to warmup on
|
||||||
Batch batch = 1;
|
Batch batch = 1;
|
||||||
|
uint32 max_input_length = 2;
|
||||||
|
uint32 max_prefill_tokens = 3;
|
||||||
|
uint32 max_total_tokens = 4;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Empty response
|
/// Empty response
|
||||||
|
|
|
@ -145,7 +145,13 @@ impl Client {
|
||||||
max_tokens: 0,
|
max_tokens: 0,
|
||||||
};
|
};
|
||||||
|
|
||||||
let request = tonic::Request::new(WarmupRequest { batch: Some(batch) }).inject_context();
|
let request = tonic::Request::new(WarmupRequest {
|
||||||
|
batch: Some(batch),
|
||||||
|
max_input_length,
|
||||||
|
max_prefill_tokens,
|
||||||
|
max_total_tokens,
|
||||||
|
})
|
||||||
|
.inject_context();
|
||||||
let response = self.stub.warmup(request).await?.into_inner();
|
let response = self.stub.warmup(request).await?.into_inner();
|
||||||
Ok(response.max_supported_total_tokens)
|
Ok(response.max_supported_total_tokens)
|
||||||
}
|
}
|
||||||
|
|
|
@ -19,9 +19,16 @@ from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
|
||||||
|
|
||||||
|
|
||||||
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
||||||
def __init__(self, model: Model, cache: Cache, server_urls: List[str]):
|
def __init__(
|
||||||
|
self,
|
||||||
|
model: Model,
|
||||||
|
cache: Cache,
|
||||||
|
quantize: Optional[str],
|
||||||
|
server_urls: List[str],
|
||||||
|
):
|
||||||
self.cache = cache
|
self.cache = cache
|
||||||
self.model = model
|
self.model = model
|
||||||
|
self.quantize = quantize
|
||||||
self.server_urls = server_urls
|
self.server_urls = server_urls
|
||||||
# For some reason, inference_mode does not work well with GLOO which we use on CPU
|
# For some reason, inference_mode does not work well with GLOO which we use on CPU
|
||||||
if model.device.type == "cuda":
|
if model.device.type == "cuda":
|
||||||
|
@ -56,6 +63,21 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
||||||
return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())
|
return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())
|
||||||
|
|
||||||
async def Warmup(self, request, context):
|
async def Warmup(self, request, context):
|
||||||
|
if self.quantize == "gptq":
|
||||||
|
try:
|
||||||
|
# When using GPTQ, Exllama kernels need some global kernels
|
||||||
|
# For which we have the finale shapes only after the model has loaded
|
||||||
|
# This will allocate those buffers.
|
||||||
|
from text_generation_server.utils.layers import (
|
||||||
|
create_exllama_buffers,
|
||||||
|
set_device,
|
||||||
|
)
|
||||||
|
|
||||||
|
set_device(self.model.device)
|
||||||
|
create_exllama_buffers(request.max_prefill_tokens)
|
||||||
|
except ImportError:
|
||||||
|
pass
|
||||||
|
|
||||||
if (
|
if (
|
||||||
self.model.batch_type == IdeficsCausalLMBatch
|
self.model.batch_type == IdeficsCausalLMBatch
|
||||||
): # Hack, i would rather use kwargs in the `from_pb` call
|
): # Hack, i would rather use kwargs in the `from_pb` call
|
||||||
|
@ -184,21 +206,6 @@ def serve(
|
||||||
logger.exception("Error when initializing model")
|
logger.exception("Error when initializing model")
|
||||||
raise
|
raise
|
||||||
|
|
||||||
if quantize == "gptq":
|
|
||||||
try:
|
|
||||||
# When using GPTQ, Exllama kernels need some global kernels
|
|
||||||
# For which we have the finale shapes only after the model has loaded
|
|
||||||
# This will allocate those buffers.
|
|
||||||
from text_generation_server.utils.layers import (
|
|
||||||
create_exllama_buffers,
|
|
||||||
set_device,
|
|
||||||
)
|
|
||||||
|
|
||||||
set_device(model.device)
|
|
||||||
create_exllama_buffers()
|
|
||||||
except ImportError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
server = aio.server(
|
server = aio.server(
|
||||||
interceptors=[
|
interceptors=[
|
||||||
ExceptionInterceptor(),
|
ExceptionInterceptor(),
|
||||||
|
@ -206,7 +213,7 @@ def serve(
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
|
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
|
||||||
TextGenerationService(model, Cache(), server_urls), server
|
TextGenerationService(model, Cache(), quantize, server_urls), server
|
||||||
)
|
)
|
||||||
SERVICE_NAMES = (
|
SERVICE_NAMES = (
|
||||||
generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
|
generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
|
||||||
|
|
|
@ -37,19 +37,12 @@ def set_device(device):
|
||||||
DEVICE = device
|
DEVICE = device
|
||||||
|
|
||||||
|
|
||||||
def create_exllama_buffers():
|
def create_exllama_buffers(max_total_tokens: int):
|
||||||
global MAX_DQ, MAX_INNER, ACT_ORDER, DEVICE, TEMP_STATE, TEMP_DQ
|
global MAX_DQ, MAX_INNER, ACT_ORDER, DEVICE, TEMP_STATE, TEMP_DQ
|
||||||
|
|
||||||
assert DEVICE is not None, "call set_device first"
|
assert DEVICE is not None, "call set_device first"
|
||||||
|
|
||||||
if ACT_ORDER:
|
if not ACT_ORDER:
|
||||||
# TODO: this should be set to rust side `max_total_tokens`, but TGI
|
|
||||||
# does not offer an API to expose this variable to python, as this variable
|
|
||||||
# is handled by the client but it appears the model is initialized by the server.
|
|
||||||
# An alternative could be to initialize the buffers during warmup.
|
|
||||||
# Dummy
|
|
||||||
max_total_tokens = 2048
|
|
||||||
else:
|
|
||||||
max_total_tokens = 1
|
max_total_tokens = 1
|
||||||
|
|
||||||
# This temp_state buffer is required to reorder X in the act-order case.
|
# This temp_state buffer is required to reorder X in the act-order case.
|
||||||
|
|
|
@ -101,7 +101,7 @@ def set_device(device):
|
||||||
DEVICE = device
|
DEVICE = device
|
||||||
|
|
||||||
|
|
||||||
def create_exllama_buffers():
|
def create_exllama_buffers(max_total_tokens: int):
|
||||||
global FIXED_BYTES, LAYERS, DEVICE
|
global FIXED_BYTES, LAYERS, DEVICE
|
||||||
temp_dq = ExLlamaV2DeviceTensors(DEVICE, FIXED_BYTES)
|
temp_dq = ExLlamaV2DeviceTensors(DEVICE, FIXED_BYTES)
|
||||||
|
|
||||||
|
@ -138,17 +138,6 @@ class QuantLinear(nn.Module):
|
||||||
self.bias = bias if bias is not None else None
|
self.bias = bias if bias is not None else None
|
||||||
self.group_size = groupsize
|
self.group_size = groupsize
|
||||||
|
|
||||||
infeatures = self.infeatures
|
|
||||||
outfeatures = self.outfeatures
|
|
||||||
assert qweight.shape == (infeatures // 32 * self.bits, outfeatures)
|
|
||||||
assert infeatures % self.group_size == 0
|
|
||||||
assert qzeros.shape == (
|
|
||||||
infeatures // self.group_size,
|
|
||||||
outfeatures // 32 * self.bits,
|
|
||||||
)
|
|
||||||
assert scales.shape == (infeatures // self.group_size, outfeatures)
|
|
||||||
assert g_idx.shape == (infeatures,), f"{g_idx.shape}, {infeatures}"
|
|
||||||
|
|
||||||
global FIXED_BYTES, LAYERS
|
global FIXED_BYTES, LAYERS
|
||||||
FIXED_BYTES = max(FIXED_BYTES, self.scratch_space_fixed())
|
FIXED_BYTES = max(FIXED_BYTES, self.scratch_space_fixed())
|
||||||
LAYERS.append(self)
|
LAYERS.append(self)
|
||||||
|
|
|
@ -281,17 +281,17 @@ class Weights:
|
||||||
else:
|
else:
|
||||||
logger.info(f"Using exllama kernels v{HAS_EXLLAMA}")
|
logger.info(f"Using exllama kernels v{HAS_EXLLAMA}")
|
||||||
|
|
||||||
if use_exllama:
|
if use_exllama and groupsize != -1:
|
||||||
qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0)
|
qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0)
|
||||||
scales = self.get_sharded(f"{prefix}.scales", dim=0)
|
scales = self.get_sharded(f"{prefix}.scales", dim=0)
|
||||||
g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
|
|
||||||
g_idx = g_idx - g_idx[0]
|
|
||||||
else:
|
else:
|
||||||
# The triton kernel reorders the scales/zero points instead of the weight/activation.
|
|
||||||
# Thus, each rank needs the full qzeros/scales.
|
|
||||||
qzeros = self.get_tensor(f"{prefix}.qzeros")
|
qzeros = self.get_tensor(f"{prefix}.qzeros")
|
||||||
scales = self.get_tensor(f"{prefix}.scales")
|
scales = self.get_tensor(f"{prefix}.scales")
|
||||||
g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
|
|
||||||
|
g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
|
||||||
|
|
||||||
|
if use_exllama:
|
||||||
|
g_idx = g_idx - g_idx[0]
|
||||||
|
|
||||||
weight = (qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama)
|
weight = (qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama)
|
||||||
elif quantize == "awq":
|
elif quantize == "awq":
|
||||||
|
|
Loading…
Reference in New Issue