feat(server): Support Galactica (#4)

This commit is contained in:
OlivierDehaene 2022-12-01 19:31:54 +01:00 committed by GitHub
parent d6d5b12e03
commit daa1d81d5e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 383 additions and 30 deletions

View File

@ -21,6 +21,7 @@ to power Bloom, BloomZ and MT0-XXL api-inference widgets.
- [BLOOM](https://huggingface.co/bigscience/bloom)
- [BLOOMZ](https://huggingface.co/bigscience/bloomz)
- [MT0-XXL](https://huggingface.co/bigscience/mt0-xxl)
- ~~[Galactica](https://huggingface.co/facebook/galactica-120b)~~ (deactivated)
Other models are supported on a best effort basis using:

View File

@ -9,11 +9,11 @@ gen-server:
install-transformers:
# Install specific version of transformers with custom cuda kernels
rm transformers || true
rm transformers-b55f16c5b71aeef47a66a4270e19c154f050a7a7 || true
curl -L -O https://github.com/OlivierDehaene/transformers/archive/b55f16c5b71aeef47a66a4270e19c154f050a7a7.zip
unzip b55f16c5b71aeef47a66a4270e19c154f050a7a7.zip
rm b55f16c5b71aeef47a66a4270e19c154f050a7a7.zip
mv transformers-b55f16c5b71aeef47a66a4270e19c154f050a7a7 transformers
rm transformers-text_generation_inference || true
curl -L -O https://github.com/OlivierDehaene/transformers/archive/refs/heads/text_generation_inference.zip
unzip text_generation_inference.zip
rm text_generation_inference.zip
mv transformers-text_generation_inference transformers
cd transformers && python setup.py install
install-torch:

View File

@ -2,6 +2,7 @@ from text_generation.models.model import Model
from text_generation.models.causal_lm import CausalLM
from text_generation.models.bloom import BLOOMSharded
from text_generation.models.seq2seq_lm import Seq2SeqLM
from text_generation.models.galactica import Galactica, GalacticaSharded
__all__ = ["Model", "BLOOMSharded", "CausalLM", "Seq2SeqLM"]
@ -12,6 +13,11 @@ def get_model(model_name: str, sharded: bool, quantize: bool) -> Model:
return BLOOMSharded(model_name, quantize=quantize)
else:
return CausalLM(model_name, quantize=quantize)
elif model_name.startswith("facebook/galactica"):
if sharded:
return GalacticaSharded(model_name, quantize=quantize)
else:
return Galactica(model_name, quantize=quantize)
else:
if sharded:
raise ValueError("sharded is not supported for AutoModel")

View File

@ -63,6 +63,8 @@ class BLOOMSharded(CausalLM):
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_name, extension=".safetensors")
if not filenames:
raise ValueError("No safetensors weights found")
with init_empty_weights():
model = AutoModelForCausalLM.from_config(config)

View File

@ -156,31 +156,29 @@ class CausalLMBatch:
past_keys = past_keys.view(batch.size, -1, *past_keys.shape[-2:])
past_values = past_values.view(batch.size, -1, *past_values.shape[-2:])
_, num_heads, head_dim, padded_sequence_length = past_keys.shape
_, num_heads, padded_sequence_length, head_dim = past_values.shape
padded_past_keys_shape = (
padded_past_values_shape = (
total_batch_size,
num_heads,
head_dim,
max_sequence_length - 1,
head_dim,
)
# head_dim is last for BLOOM
if past_values.shape[-1] == head_dim:
past_values_head_dim_last = True
padded_past_values_shape = (
# seq_length is last for BLOOM
if past_keys.shape[-2] == head_dim:
past_keys_head_dim_last = False
padded_past_keys_shape = (
total_batch_size,
num_heads,
max_sequence_length - 1,
head_dim,
max_sequence_length - 1,
)
elif past_values.shape[-2] == head_dim:
past_values_head_dim_last = False
padded_past_values_shape = padded_past_keys_shape
elif past_keys.shape[-1] == head_dim:
past_keys_head_dim_last = True
padded_past_keys_shape = padded_past_values_shape
else:
raise ValueError(
f"past_values shape {past_values.shape} is not valid"
)
raise ValueError(f"past_keys shape {past_keys.shape} is not valid")
# This will run only once per layer
if j == len(past_key_values):
@ -197,24 +195,24 @@ class CausalLMBatch:
past_key_values.append((padded_past_keys, padded_past_values))
# We slice the past keys and values to remove the padding from previous batches
past_key_values[j][0][
start_index:end_index, :, :, -(batch.max_sequence_length - 1) :
] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]
if past_values_head_dim_last:
past_key_values[j][1][
if past_keys_head_dim_last:
past_key_values[j][0][
start_index:end_index,
:,
-(batch.max_sequence_length - 1) :,
:,
] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
] = past_keys[:, :, -(batch.max_sequence_length - 1) :, :]
else:
past_key_values[j][1][
past_key_values[j][0][
start_index:end_index,
:,
:,
-(batch.max_sequence_length - 1) :,
] = past_values[:, :, :, -(batch.max_sequence_length - 1) :]
] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]
past_key_values[j][1][
start_index:end_index, :, -(batch.max_sequence_length - 1) :, :
] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
start_index += batch.size
@ -243,13 +241,13 @@ class CausalLM(Model):
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
load_in_8bit=quantize,
).eval()
tokenizer.pad_token_id = self.model.config.pad_token_id
super(CausalLM, self).__init__(
tokenizer=tokenizer,

View File

@ -0,0 +1,346 @@
import re
import torch
import torch.distributed
from typing import List, Optional, Type
from accelerate import init_empty_weights
from safetensors import safe_open
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers.models.opt.parallel_layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
)
from text_generation.models import CausalLM
from text_generation.pb import generate_pb2
from text_generation.models.causal_lm import CausalLMBatch
from text_generation.utils import (
NextTokenChooser,
StoppingCriteria,
initialize_torch_distributed,
weight_files,
download_weights,
)
HAS_BITS_AND_BYTES = True
try:
import bitsandbytes as bnb
from bitsandbytes.nn import Int8Params
except Exception as e:
HAS_BITS_AND_BYTES = False
torch.manual_seed(0)
# CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py
# we split individual characters inside special tokens like [START_DNA]
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")
# token added to implement a custom sequence tokenization. This token is added at
# corpus cleaning step and removed in pretokenization. The digits are added to increase the chance
# that they do not occur in the corpus. The digits are escaped so that the token does not appear
# literally in the source code in case we ever include it in the training data.
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"
def _insert_split_marker(m: re.Match):
"""
Applies split marker based on a regex match of special tokens such as
[START_DNA].
Parameters
----------
n : str
Input text to split
Returns
----------
str - the text with the split token added
"""
start_token, _, sequence, end_token = m.groups()
sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"
def escape_custom_split_sequence(text):
"""
Applies custom splitting to the text for GALILEO's tokenization
Parameters
----------
text : str
Input text to split
Returns
----------
str - the text with the split token added
"""
return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)
# END CREDIT
class GalacticaCausalLMBatch(CausalLMBatch):
@classmethod
def from_pb(
cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
) -> "CausalLMBatch":
inputs = []
next_token_choosers = []
stopping_criterias = []
input_lengths = []
# Parse batch
for r in pb.requests:
# Add escape_custom_split_sequence to the CausalLMBatch logic
inputs.append(escape_custom_split_sequence(r.inputs))
input_lengths.append(r.input_length)
next_token_choosers.append(
NextTokenChooser(
temperature=r.parameters.temperature,
top_k=r.parameters.top_k,
top_p=r.parameters.top_p,
do_sample=r.parameters.do_sample,
)
)
stopping_criterias.append(
StoppingCriteria(
eos_token_id=tokenizer.eos_token_id, max_new_tokens=r.max_new_tokens
)
)
tokenized_inputs = tokenizer(
inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
).to(device)
all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
return cls(
batch_id=pb.id,
requests=pb.requests,
input_ids=tokenized_inputs["input_ids"],
attention_mask=tokenized_inputs["attention_mask"],
past_key_values=None,
all_input_ids=all_input_ids,
input_lengths=input_lengths,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=pb.size,
max_sequence_length=max(input_lengths),
)
class Galactica(CausalLM):
@property
def batch_type(self) -> Type[CausalLMBatch]:
return GalacticaCausalLMBatch
class GalacticaSharded(Galactica):
def __init__(self, model_name: str, quantize: bool = False):
if not model_name.startswith("facebook/galactica"):
raise ValueError(f"Model {model_name} is not supported")
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
self.master = self.rank == 0
if torch.cuda.is_available():
device = torch.device(f"cuda:{self.rank}")
dtype = torch.bfloat16
else:
device = torch.device("cpu")
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
config = AutoConfig.from_pretrained(model_name, tp_parallel=True)
tokenizer.pad_token_id = config.pad_token_id
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
# Only download weights for small models
if self.master and model_name == "facebook/galactica-125m":
download_weights(model_name, extension=".safetensors")
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_name, extension=".safetensors")
if not filenames:
raise ValueError("No safetensors weights found")
with init_empty_weights():
model = AutoModelForCausalLM.from_config(config)
torch.distributed.barrier(group=self.process_group)
self.load_weights(
model,
filenames,
quantize=quantize,
device=device,
rank=self.rank,
world_size=self.world_size,
)
self.model = model.eval().to(dtype)
torch.distributed.barrier(group=self.process_group)
super(CausalLM, self).__init__(
tokenizer=tokenizer,
num_heads=config.num_attention_heads // self.process_group.size(),
device=device,
)
@staticmethod
def load_weights(
model,
filenames: List[str],
quantize: bool,
device: torch.device,
rank: int,
world_size: int,
):
parameters = dict(model.named_parameters())
for file in filenames:
with safe_open(
file, framework="pt", device=str(device) if not quantize else "cpu"
) as f:
for name in f.keys():
if name == "lm_head.weight":
continue
module_name, param_name = name.rsplit(".", 1)
try:
module = model.get_submodule(module_name)
except Exception as e:
print(type(model), name, module_name, param_name)
raise e
current_tensor = parameters[name]
slice_ = f.get_slice(name)
if isinstance(module, TensorParallelColumnLinear):
if param_name == "weight":
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
tensor = tensor.transpose(1, 0)
else:
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
elif isinstance(module, TensorParallelRowLinear):
if param_name == "weight":
size = slice_.get_shape()[1]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[:, start:stop]
tensor = tensor.transpose(1, 0)
else:
tensor = slice_[:]
# XXX: Hack for Rowlinear to add the bias only once.
if rank != 0:
tensor = torch.zeros_like(tensor)
elif isinstance(module, TensorParallelEmbedding):
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
else:
tensor = slice_[:]
if current_tensor.shape != tensor.shape:
raise ValueError(
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
)
tensor = tensor.contiguous()
if quantize:
if not HAS_BITS_AND_BYTES:
raise ImportError(
"bitsandbytes is not available on your machine either because it is not installed "
"or you don't have a GPU.\n"
"You can install it with `pip install bitsandbytes`."
)
if (
type(module)
in [TensorParallelRowLinear, TensorParallelColumnLinear]
and param_name == "weight"
):
tensor = Int8Params(
tensor.transpose(1, 0),
has_fp16_weights=False,
requires_grad=False,
).to(device)
state = bnb.MatmulLtState()
state.threshold = 6.0
state.has_fp16_weights = False
state.memory_efficient_backward = False
state.use_pool = True
state.CB = tensor.CB
state.SCB = tensor.SCB
tensor.CB = None
tensor.SCB = None
def replace_linear(state, in_features, out_features):
def linear(input, weight, bias):
size_out = input.size()[:-1] + (out_features,)
input = input.view(-1, in_features)
out = torch.empty(
size_out, device=input.device, dtype=input.dtype
)
out = bnb.matmul(
input,
weight,
out=out.view(-1, out_features),
state=state,
threshold=state.threshold,
bias=bias,
)
if state.CB is not None:
# we converted 8-bit row major to turing/ampere format
# in the first inference pass
# we no longer need the row-major weight
del state.CB
weight.data = state.CxB
return out.view(size_out)
return linear
module.linear = replace_linear(
state, module.in_features, module.out_features
)
else:
tensor = tensor.to(device)
module._parameters[param_name] = tensor
if name == "model.decoder.embed_tokens.weight":
model.lm_head._parameters["weight"] = tensor
def forward(self, input_ids, attention_mask, past_key_values: Optional = None):
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
# Logits are sharded, so we need to gather them
logits_shard = outputs.logits[:, -1, :].contiguous()
batch_size, vocab_shard_size = logits_shard.shape
vocab_size = self.world_size * vocab_shard_size
logits = [torch.empty_like(logits_shard) for _ in range(self.world_size)]
torch.distributed.all_gather(logits, logits_shard, group=self.process_group)
logits = torch.cat(logits, dim=1).view(batch_size, 1, vocab_size)
return logits, outputs.past_key_values

View File

@ -11,7 +11,7 @@ from functools import partial
from huggingface_hub import HfApi, hf_hub_download, try_to_load_from_cache
from huggingface_hub.utils import LocalEntryNotFoundError
from tqdm import tqdm
from transformers.generation_logits_process import (
from transformers.generation.logits_process import (
LogitsProcessorList,
TemperatureLogitsWarper,
TopPLogitsWarper,