feat(server): Support Galactica (#4)
This commit is contained in:
parent
d6d5b12e03
commit
daa1d81d5e
|
@ -21,6 +21,7 @@ to power Bloom, BloomZ and MT0-XXL api-inference widgets.
|
|||
- [BLOOM](https://huggingface.co/bigscience/bloom)
|
||||
- [BLOOMZ](https://huggingface.co/bigscience/bloomz)
|
||||
- [MT0-XXL](https://huggingface.co/bigscience/mt0-xxl)
|
||||
- ~~[Galactica](https://huggingface.co/facebook/galactica-120b)~~ (deactivated)
|
||||
|
||||
Other models are supported on a best effort basis using:
|
||||
|
||||
|
|
|
@ -9,11 +9,11 @@ gen-server:
|
|||
install-transformers:
|
||||
# Install specific version of transformers with custom cuda kernels
|
||||
rm transformers || true
|
||||
rm transformers-b55f16c5b71aeef47a66a4270e19c154f050a7a7 || true
|
||||
curl -L -O https://github.com/OlivierDehaene/transformers/archive/b55f16c5b71aeef47a66a4270e19c154f050a7a7.zip
|
||||
unzip b55f16c5b71aeef47a66a4270e19c154f050a7a7.zip
|
||||
rm b55f16c5b71aeef47a66a4270e19c154f050a7a7.zip
|
||||
mv transformers-b55f16c5b71aeef47a66a4270e19c154f050a7a7 transformers
|
||||
rm transformers-text_generation_inference || true
|
||||
curl -L -O https://github.com/OlivierDehaene/transformers/archive/refs/heads/text_generation_inference.zip
|
||||
unzip text_generation_inference.zip
|
||||
rm text_generation_inference.zip
|
||||
mv transformers-text_generation_inference transformers
|
||||
cd transformers && python setup.py install
|
||||
|
||||
install-torch:
|
||||
|
|
|
@ -2,6 +2,7 @@ from text_generation.models.model import Model
|
|||
from text_generation.models.causal_lm import CausalLM
|
||||
from text_generation.models.bloom import BLOOMSharded
|
||||
from text_generation.models.seq2seq_lm import Seq2SeqLM
|
||||
from text_generation.models.galactica import Galactica, GalacticaSharded
|
||||
|
||||
__all__ = ["Model", "BLOOMSharded", "CausalLM", "Seq2SeqLM"]
|
||||
|
||||
|
@ -12,6 +13,11 @@ def get_model(model_name: str, sharded: bool, quantize: bool) -> Model:
|
|||
return BLOOMSharded(model_name, quantize=quantize)
|
||||
else:
|
||||
return CausalLM(model_name, quantize=quantize)
|
||||
elif model_name.startswith("facebook/galactica"):
|
||||
if sharded:
|
||||
return GalacticaSharded(model_name, quantize=quantize)
|
||||
else:
|
||||
return Galactica(model_name, quantize=quantize)
|
||||
else:
|
||||
if sharded:
|
||||
raise ValueError("sharded is not supported for AutoModel")
|
||||
|
|
|
@ -63,6 +63,8 @@ class BLOOMSharded(CausalLM):
|
|||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_name, extension=".safetensors")
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
with init_empty_weights():
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
|
|
|
@ -156,31 +156,29 @@ class CausalLMBatch:
|
|||
past_keys = past_keys.view(batch.size, -1, *past_keys.shape[-2:])
|
||||
past_values = past_values.view(batch.size, -1, *past_values.shape[-2:])
|
||||
|
||||
_, num_heads, head_dim, padded_sequence_length = past_keys.shape
|
||||
_, num_heads, padded_sequence_length, head_dim = past_values.shape
|
||||
|
||||
padded_past_keys_shape = (
|
||||
padded_past_values_shape = (
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
head_dim,
|
||||
max_sequence_length - 1,
|
||||
head_dim,
|
||||
)
|
||||
|
||||
# head_dim is last for BLOOM
|
||||
if past_values.shape[-1] == head_dim:
|
||||
past_values_head_dim_last = True
|
||||
padded_past_values_shape = (
|
||||
# seq_length is last for BLOOM
|
||||
if past_keys.shape[-2] == head_dim:
|
||||
past_keys_head_dim_last = False
|
||||
padded_past_keys_shape = (
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
max_sequence_length - 1,
|
||||
head_dim,
|
||||
max_sequence_length - 1,
|
||||
)
|
||||
elif past_values.shape[-2] == head_dim:
|
||||
past_values_head_dim_last = False
|
||||
padded_past_values_shape = padded_past_keys_shape
|
||||
elif past_keys.shape[-1] == head_dim:
|
||||
past_keys_head_dim_last = True
|
||||
padded_past_keys_shape = padded_past_values_shape
|
||||
else:
|
||||
raise ValueError(
|
||||
f"past_values shape {past_values.shape} is not valid"
|
||||
)
|
||||
raise ValueError(f"past_keys shape {past_keys.shape} is not valid")
|
||||
|
||||
# This will run only once per layer
|
||||
if j == len(past_key_values):
|
||||
|
@ -197,24 +195,24 @@ class CausalLMBatch:
|
|||
past_key_values.append((padded_past_keys, padded_past_values))
|
||||
|
||||
# We slice the past keys and values to remove the padding from previous batches
|
||||
past_key_values[j][0][
|
||||
start_index:end_index, :, :, -(batch.max_sequence_length - 1) :
|
||||
] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]
|
||||
|
||||
if past_values_head_dim_last:
|
||||
past_key_values[j][1][
|
||||
if past_keys_head_dim_last:
|
||||
past_key_values[j][0][
|
||||
start_index:end_index,
|
||||
:,
|
||||
-(batch.max_sequence_length - 1) :,
|
||||
:,
|
||||
] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
|
||||
] = past_keys[:, :, -(batch.max_sequence_length - 1) :, :]
|
||||
else:
|
||||
past_key_values[j][1][
|
||||
past_key_values[j][0][
|
||||
start_index:end_index,
|
||||
:,
|
||||
:,
|
||||
-(batch.max_sequence_length - 1) :,
|
||||
] = past_values[:, :, :, -(batch.max_sequence_length - 1) :]
|
||||
] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]
|
||||
|
||||
past_key_values[j][1][
|
||||
start_index:end_index, :, -(batch.max_sequence_length - 1) :, :
|
||||
] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
|
||||
|
||||
start_index += batch.size
|
||||
|
||||
|
@ -243,13 +241,13 @@ class CausalLM(Model):
|
|||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=dtype,
|
||||
device_map="auto" if torch.cuda.is_available() else None,
|
||||
load_in_8bit=quantize,
|
||||
).eval()
|
||||
tokenizer.pad_token_id = self.model.config.pad_token_id
|
||||
|
||||
super(CausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
|
|
|
@ -0,0 +1,346 @@
|
|||
import re
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from typing import List, Optional, Type
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from safetensors import safe_open
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||||
from transformers.models.opt.parallel_layers import (
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
|
||||
from text_generation.models import CausalLM
|
||||
from text_generation.pb import generate_pb2
|
||||
from text_generation.models.causal_lm import CausalLMBatch
|
||||
from text_generation.utils import (
|
||||
NextTokenChooser,
|
||||
StoppingCriteria,
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
download_weights,
|
||||
)
|
||||
|
||||
HAS_BITS_AND_BYTES = True
|
||||
try:
|
||||
import bitsandbytes as bnb
|
||||
from bitsandbytes.nn import Int8Params
|
||||
except Exception as e:
|
||||
HAS_BITS_AND_BYTES = False
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
# CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py
|
||||
|
||||
# we split individual characters inside special tokens like [START_DNA]
|
||||
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")
|
||||
|
||||
# token added to implement a custom sequence tokenization. This token is added at
|
||||
# corpus cleaning step and removed in pretokenization. The digits are added to increase the chance
|
||||
# that they do not occur in the corpus. The digits are escaped so that the token does not appear
|
||||
# literally in the source code in case we ever include it in the training data.
|
||||
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"
|
||||
|
||||
|
||||
def _insert_split_marker(m: re.Match):
|
||||
"""
|
||||
Applies split marker based on a regex match of special tokens such as
|
||||
[START_DNA].
|
||||
Parameters
|
||||
----------
|
||||
n : str
|
||||
Input text to split
|
||||
Returns
|
||||
----------
|
||||
str - the text with the split token added
|
||||
"""
|
||||
start_token, _, sequence, end_token = m.groups()
|
||||
sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
|
||||
return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"
|
||||
|
||||
|
||||
def escape_custom_split_sequence(text):
|
||||
"""
|
||||
Applies custom splitting to the text for GALILEO's tokenization
|
||||
Parameters
|
||||
----------
|
||||
text : str
|
||||
Input text to split
|
||||
Returns
|
||||
----------
|
||||
str - the text with the split token added
|
||||
"""
|
||||
return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)
|
||||
|
||||
|
||||
# END CREDIT
|
||||
|
||||
|
||||
class GalacticaCausalLMBatch(CausalLMBatch):
|
||||
@classmethod
|
||||
def from_pb(
|
||||
cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
|
||||
) -> "CausalLMBatch":
|
||||
inputs = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
input_lengths = []
|
||||
|
||||
# Parse batch
|
||||
for r in pb.requests:
|
||||
# Add escape_custom_split_sequence to the CausalLMBatch logic
|
||||
inputs.append(escape_custom_split_sequence(r.inputs))
|
||||
input_lengths.append(r.input_length)
|
||||
next_token_choosers.append(
|
||||
NextTokenChooser(
|
||||
temperature=r.parameters.temperature,
|
||||
top_k=r.parameters.top_k,
|
||||
top_p=r.parameters.top_p,
|
||||
do_sample=r.parameters.do_sample,
|
||||
)
|
||||
)
|
||||
stopping_criterias.append(
|
||||
StoppingCriteria(
|
||||
eos_token_id=tokenizer.eos_token_id, max_new_tokens=r.max_new_tokens
|
||||
)
|
||||
)
|
||||
|
||||
tokenized_inputs = tokenizer(
|
||||
inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
|
||||
).to(device)
|
||||
all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
input_ids=tokenized_inputs["input_ids"],
|
||||
attention_mask=tokenized_inputs["attention_mask"],
|
||||
past_key_values=None,
|
||||
all_input_ids=all_input_ids,
|
||||
input_lengths=input_lengths,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=pb.size,
|
||||
max_sequence_length=max(input_lengths),
|
||||
)
|
||||
|
||||
|
||||
class Galactica(CausalLM):
|
||||
@property
|
||||
def batch_type(self) -> Type[CausalLMBatch]:
|
||||
return GalacticaCausalLMBatch
|
||||
|
||||
|
||||
class GalacticaSharded(Galactica):
|
||||
def __init__(self, model_name: str, quantize: bool = False):
|
||||
if not model_name.startswith("facebook/galactica"):
|
||||
raise ValueError(f"Model {model_name} is not supported")
|
||||
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
|
||||
config = AutoConfig.from_pretrained(model_name, tp_parallel=True)
|
||||
tokenizer.pad_token_id = config.pad_token_id
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# Only download weights for small models
|
||||
if self.master and model_name == "facebook/galactica-125m":
|
||||
download_weights(model_name, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_name, extension=".safetensors")
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
with init_empty_weights():
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
num_heads=config.num_attention_heads // self.process_group.size(),
|
||||
device=device,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
parameters = dict(model.named_parameters())
|
||||
for file in filenames:
|
||||
with safe_open(
|
||||
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||||
) as f:
|
||||
for name in f.keys():
|
||||
if name == "lm_head.weight":
|
||||
continue
|
||||
|
||||
module_name, param_name = name.rsplit(".", 1)
|
||||
try:
|
||||
module = model.get_submodule(module_name)
|
||||
except Exception as e:
|
||||
print(type(model), name, module_name, param_name)
|
||||
raise e
|
||||
current_tensor = parameters[name]
|
||||
|
||||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
tensor = tensor.transpose(1, 0)
|
||||
else:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[1]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[:, start:stop]
|
||||
tensor = tensor.transpose(1, 0)
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
# XXX: Hack for Rowlinear to add the bias only once.
|
||||
if rank != 0:
|
||||
tensor = torch.zeros_like(tensor)
|
||||
elif isinstance(module, TensorParallelEmbedding):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
|
||||
if current_tensor.shape != tensor.shape:
|
||||
raise ValueError(
|
||||
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
|
||||
if quantize:
|
||||
if not HAS_BITS_AND_BYTES:
|
||||
raise ImportError(
|
||||
"bitsandbytes is not available on your machine either because it is not installed "
|
||||
"or you don't have a GPU.\n"
|
||||
"You can install it with `pip install bitsandbytes`."
|
||||
)
|
||||
|
||||
if (
|
||||
type(module)
|
||||
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
||||
and param_name == "weight"
|
||||
):
|
||||
tensor = Int8Params(
|
||||
tensor.transpose(1, 0),
|
||||
has_fp16_weights=False,
|
||||
requires_grad=False,
|
||||
).to(device)
|
||||
state = bnb.MatmulLtState()
|
||||
state.threshold = 6.0
|
||||
state.has_fp16_weights = False
|
||||
state.memory_efficient_backward = False
|
||||
state.use_pool = True
|
||||
state.CB = tensor.CB
|
||||
state.SCB = tensor.SCB
|
||||
tensor.CB = None
|
||||
tensor.SCB = None
|
||||
|
||||
def replace_linear(state, in_features, out_features):
|
||||
def linear(input, weight, bias):
|
||||
size_out = input.size()[:-1] + (out_features,)
|
||||
input = input.view(-1, in_features)
|
||||
out = torch.empty(
|
||||
size_out, device=input.device, dtype=input.dtype
|
||||
)
|
||||
out = bnb.matmul(
|
||||
input,
|
||||
weight,
|
||||
out=out.view(-1, out_features),
|
||||
state=state,
|
||||
threshold=state.threshold,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
if state.CB is not None:
|
||||
# we converted 8-bit row major to turing/ampere format
|
||||
# in the first inference pass
|
||||
# we no longer need the row-major weight
|
||||
del state.CB
|
||||
weight.data = state.CxB
|
||||
|
||||
return out.view(size_out)
|
||||
|
||||
return linear
|
||||
|
||||
module.linear = replace_linear(
|
||||
state, module.in_features, module.out_features
|
||||
)
|
||||
|
||||
else:
|
||||
tensor = tensor.to(device)
|
||||
|
||||
module._parameters[param_name] = tensor
|
||||
if name == "model.decoder.embed_tokens.weight":
|
||||
model.lm_head._parameters["weight"] = tensor
|
||||
|
||||
def forward(self, input_ids, attention_mask, past_key_values: Optional = None):
|
||||
outputs = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
# Logits are sharded, so we need to gather them
|
||||
logits_shard = outputs.logits[:, -1, :].contiguous()
|
||||
|
||||
batch_size, vocab_shard_size = logits_shard.shape
|
||||
vocab_size = self.world_size * vocab_shard_size
|
||||
logits = [torch.empty_like(logits_shard) for _ in range(self.world_size)]
|
||||
torch.distributed.all_gather(logits, logits_shard, group=self.process_group)
|
||||
logits = torch.cat(logits, dim=1).view(batch_size, 1, vocab_size)
|
||||
|
||||
return logits, outputs.past_key_values
|
|
@ -11,7 +11,7 @@ from functools import partial
|
|||
from huggingface_hub import HfApi, hf_hub_download, try_to_load_from_cache
|
||||
from huggingface_hub.utils import LocalEntryNotFoundError
|
||||
from tqdm import tqdm
|
||||
from transformers.generation_logits_process import (
|
||||
from transformers.generation.logits_process import (
|
||||
LogitsProcessorList,
|
||||
TemperatureLogitsWarper,
|
||||
TopPLogitsWarper,
|
||||
|
|
Loading…
Reference in New Issue