Use symmetric quantization in the `quantize` subcommand (#2120)

Packing of asymmetric quantization is broken, all (q)zeros values
of `0` get reset to `1`, resulting in a loss of accuracy. So instead
use symmetric quantization. To be able to distinguish models with
symmetric and asymmetric quantization, a new config tensor `gptq_sym` is
added. If this tensor is not present, we assume `sym=False`.
This commit is contained in:
Daniël de Kok 2024-07-12 12:20:12 +02:00 committed by GitHub
parent c46eaf707b
commit dbb23fbfa8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 19 additions and 4 deletions

View File

@ -353,6 +353,7 @@ def quantize(
upload_to_model_id=upload_to_model_id,
percdamp=percdamp,
act_order=act_order,
sym=True,
)

View File

@ -393,11 +393,15 @@ class GPTQWeightsLoader(WeightsLoader):
)
def _get_gptq_params(self, weights: Weights):
try:
if weights._has_tensor("gptq_bits") and weights._has_tensor("gptq_groupsize"):
self.bits = weights.get_tensor("gptq_bits").item()
self.groupsize = weights.get_tensor("gptq_groupsize").item()
self.desc_act = False
self.sym = False
# `server quantize` used asymmetric quantization unconditionally
# before the `gptq_sym` setting tensor was added.
self.sym = (
weights.get_tensor("gptq_sym").item()
if weights._has_tensor("gptq_sym")
else False
)
self.quant_method = "gptq"
except (SafetensorError, RuntimeError) as e:
pass

View File

@ -871,6 +871,7 @@ def quantize(
upload_to_model_id: Optional[str],
percdamp: float,
act_order: bool,
sym: bool,
):
print("loading model")
config = AutoConfig.from_pretrained(
@ -946,6 +947,7 @@ def quantize(
percdamp=percdamp,
act_order=act_order,
hooks=hooks,
sym=sym,
)
print(time.time() - tick)
@ -957,6 +959,7 @@ def quantize(
state_dict = {k: v.cpu().contiguous() for k, v in state_dict.items()}
state_dict["gptq_bits"] = torch.LongTensor([bits])
state_dict["gptq_groupsize"] = torch.LongTensor([groupsize])
state_dict["gptq_sym"] = torch.BoolTensor([sym])
max_shard_size = "10GB"
shards, index = shard_checkpoint(

View File

@ -146,6 +146,13 @@ class Weights:
slice_ = f.get_slice(tensor_name)
return slice_
def _has_tensor(self, tensor_name: str):
try:
self.get_filename(tensor_name)
except Exception:
return False
return True
def get_shape(self, tensor_name: str):
return self._get_slice(tensor_name).get_shape()