Merge branch 'main' into ci_amd3
This commit is contained in:
commit
dc53846456
|
@ -11,66 +11,24 @@ on:
|
|||
- 'main'
|
||||
|
||||
jobs:
|
||||
start-runner:
|
||||
name: Start self-hosted EC2 runner
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
AWS_REGION: eu-central-1
|
||||
EC2_AMI_ID: ami-0ab09c07cfd194259
|
||||
EC2_INSTANCE_TYPE: g5.12xlarge
|
||||
EC2_SUBNET_ID: subnet-988fd9f2,subnet-6f56db13,subnet-6a039326
|
||||
EC2_SECURITY_GROUP: sg-072f92ae3082936c6
|
||||
outputs:
|
||||
label: ${{ steps.start-ec2-runner.outputs.label }}
|
||||
ec2-instance-id: ${{ steps.start-ec2-runner.outputs.ec2-instance-id }}
|
||||
steps:
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v1
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ env.AWS_REGION }}
|
||||
- name: Start EC2 runner
|
||||
id: start-ec2-runner
|
||||
uses: philschmid/philschmid-ec2-github-runner@main
|
||||
with:
|
||||
mode: start
|
||||
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
|
||||
ec2-image-id: ${{ env.EC2_AMI_ID }}
|
||||
ec2-instance-type: ${{ env.EC2_INSTANCE_TYPE }}
|
||||
subnet-id: ${{ env.EC2_SUBNET_ID }}
|
||||
security-group-id: ${{ env.EC2_SECURITY_GROUP }}
|
||||
aws-resource-tags: > # optional, requires additional permissions
|
||||
[
|
||||
{"Key": "Name", "Value": "ec2-tgi-github-runner"},
|
||||
{"Key": "GitHubRepository", "Value": "${{ github.repository }}"}
|
||||
]
|
||||
|
||||
load-tests:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
needs: start-runner # required to start the main job when the runner is ready
|
||||
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
|
||||
runs-on: [self-hosted, nvidia-gpu , multi-gpu, 4-a10, ci]
|
||||
env:
|
||||
DOCKER_VOLUME: /cache
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare disks
|
||||
run: |
|
||||
sudo mkfs -t ext4 /dev/nvme1n1
|
||||
sudo mkdir ${{ env.DOCKER_VOLUME }}
|
||||
sudo mount /dev/nvme1n1 ${{ env.DOCKER_VOLUME }}
|
||||
|
||||
- name: Install k6
|
||||
run: |
|
||||
curl https://github.com/grafana/k6/releases/download/v0.44.0/k6-v0.44.0-linux-amd64.tar.gz -L | tar xvz --strip-components 1
|
||||
|
||||
- name: Start starcoder
|
||||
run: |
|
||||
docker run --name tgi-starcoder --rm --gpus all -p 3000:80 -v ${{ env.DOCKER_VOLUME }}:/data -e HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} --pull always -d ghcr.io/huggingface/text-generation-inference:latest --model-id bigcode/starcoder --num-shard 2 --max-batch-total-tokens 32768
|
||||
docker run --name tgi-starcoder --rm --gpus all -p 3000:80 -v /mnt/cache:/data -e HF_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }} --pull always -d ghcr.io/huggingface/text-generation-inference:latest --model-id bigcode/starcoder --num-shard 2 --max-batch-total-tokens 32768
|
||||
sleep 10
|
||||
wget --timeout 10 --retry-on-http-error --waitretry=1 --tries=240 http://localhost:3000/health
|
||||
|
||||
|
@ -82,27 +40,3 @@ jobs:
|
|||
if: ${{ always() }}
|
||||
run: |
|
||||
docker stop tgi-starcoder || true
|
||||
|
||||
stop-runner:
|
||||
name: Stop self-hosted EC2 runner
|
||||
needs:
|
||||
- start-runner
|
||||
- load-tests
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
AWS_REGION: eu-central-1
|
||||
if: ${{ always() }} # required to stop the runner even if the error happened in the previous jobs
|
||||
steps:
|
||||
- name: Configure AWS credentials
|
||||
uses: aws-actions/configure-aws-credentials@v1
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ env.AWS_REGION }}
|
||||
- name: Stop EC2 runner
|
||||
uses: philschmid/philschmid-ec2-github-runner@main
|
||||
with:
|
||||
mode: stop
|
||||
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
|
||||
label: ${{ needs.start-runner.outputs.label }}
|
||||
ec2-instance-id: ${{ needs.start-runner.outputs.ec2-instance-id }}
|
||||
|
|
|
@ -72,7 +72,7 @@ jobs:
|
|||
- name: Run server tests
|
||||
run: |
|
||||
pip install pytest
|
||||
export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }}
|
||||
export HF_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }}
|
||||
pytest -s -vv server/tests
|
||||
- name: Pre-commit checks
|
||||
run: |
|
||||
|
|
|
@ -49,7 +49,7 @@ RUN wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --dea
|
|||
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \
|
||||
| gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list
|
||||
|
||||
RUN apt-get update && apt install -y intel-basekit xpu-smi cmake python3-dev ninja-build
|
||||
RUN apt-get update && apt install -y intel-basekit xpu-smi cmake python3-dev ninja-build pciutils
|
||||
|
||||
# Text Generation Inference base env
|
||||
ENV HUGGINGFACE_HUB_CACHE=/data \
|
||||
|
|
|
@ -105,14 +105,14 @@ The Swagger UI is also available at: [https://huggingface.github.io/text-generat
|
|||
|
||||
### Using a private or gated model
|
||||
|
||||
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
|
||||
You have the option to utilize the `HF_TOKEN` environment variable for configuring the token employed by
|
||||
`text-generation-inference`. This allows you to gain access to protected resources.
|
||||
|
||||
For example, if you want to serve the gated Llama V2 model variants:
|
||||
|
||||
1. Go to https://huggingface.co/settings/tokens
|
||||
2. Copy your cli READ token
|
||||
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`
|
||||
3. Export `HF_TOKEN=<your cli READ token>`
|
||||
|
||||
or with Docker:
|
||||
|
||||
|
@ -121,7 +121,7 @@ model=meta-llama/Llama-2-7b-chat-hf
|
|||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
token=<your cli READ token>
|
||||
|
||||
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
|
||||
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
|
||||
```
|
||||
|
||||
### A note on Shared Memory (shm)
|
||||
|
@ -153,7 +153,8 @@ this will impact performance.
|
|||
### Distributed Tracing
|
||||
|
||||
`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
|
||||
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.
|
||||
by setting the address to an OTLP collector with the `--otlp-endpoint` argument. The default service name can be
|
||||
overridden with the `--otlp-service-name` argument
|
||||
|
||||
### Architecture
|
||||
|
||||
|
|
|
@ -147,7 +147,7 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
|
|||
tracing::info!("Downloading tokenizer");
|
||||
|
||||
// Parse Huggingface hub token
|
||||
let auth_token = std::env::var("HUGGING_FACE_HUB_TOKEN").ok();
|
||||
let auth_token = std::env::var("HF_TOKEN").or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN")).ok();
|
||||
|
||||
// Download and instantiate tokenizer
|
||||
// We need to download it outside of the Tokio runtime
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from enum import Enum
|
||||
from pydantic import BaseModel, field_validator
|
||||
from pydantic import BaseModel, field_validator, ConfigDict
|
||||
from typing import Optional, List, Union, Any
|
||||
|
||||
from text_generation.errors import ValidationError
|
||||
|
@ -452,5 +452,9 @@ class StreamResponse(BaseModel):
|
|||
|
||||
# Inference API currently deployed model
|
||||
class DeployedModel(BaseModel):
|
||||
# Disable warning for use of `model_` prefix in `model_id`. Be mindful about adding members
|
||||
# with model_ prefixes, since this disables guardrails for colliding fields:
|
||||
# https://github.com/pydantic/pydantic/issues/9177
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
model_id: str
|
||||
sha: str
|
||||
|
|
|
@ -70,6 +70,8 @@ Options:
|
|||
[env: JSON_OUTPUT=]
|
||||
--otlp-endpoint <OTLP_ENDPOINT>
|
||||
[env: OTLP_ENDPOINT=]
|
||||
--otlp-service-name <OTLP_SERVICE_NAME>
|
||||
[env: OTLP_SERVICE_NAME=]
|
||||
--cors-allow-origin <CORS_ALLOW_ORIGIN>
|
||||
[env: CORS_ALLOW_ORIGIN=]
|
||||
--ngrok
|
||||
|
@ -138,6 +140,8 @@ Serve's command line parameters on the TGI repository are these:
|
|||
│ --logger-level TEXT [default: INFO] │
|
||||
│ --json-output --no-json-output [default: no-json-output] │
|
||||
│ --otlp-endpoint TEXT [default: None] │
|
||||
│ --otlp-service-name TEXT [default: │
|
||||
│ text-generation-inference...│
|
||||
│ --help Show this message and exit. │
|
||||
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────╯
|
||||
```
|
||||
|
|
|
@ -2,13 +2,13 @@
|
|||
|
||||
If the model you wish to serve is behind gated access or the model repository on Hugging Face Hub is private, and you have access to the model, you can provide your Hugging Face Hub access token. You can generate and copy a read token from [Hugging Face Hub tokens page](https://huggingface.co/settings/tokens)
|
||||
|
||||
If you're using the CLI, set the `HUGGING_FACE_HUB_TOKEN` environment variable. For example:
|
||||
If you're using the CLI, set the `HF_TOKEN` environment variable. For example:
|
||||
|
||||
```
|
||||
export HUGGING_FACE_HUB_TOKEN=<YOUR READ TOKEN>
|
||||
export HF_TOKEN=<YOUR READ TOKEN>
|
||||
```
|
||||
|
||||
If you would like to do it through Docker, you can provide your token by specifying `HUGGING_FACE_HUB_TOKEN` as shown below.
|
||||
If you would like to do it through Docker, you can provide your token by specifying `HF_TOKEN` as shown below.
|
||||
|
||||
```bash
|
||||
model=meta-llama/Llama-2-7b-chat-hf
|
||||
|
@ -17,7 +17,7 @@ token=<your READ token>
|
|||
|
||||
docker run --gpus all \
|
||||
--shm-size 1g \
|
||||
-e HUGGING_FACE_HUB_TOKEN=$token \
|
||||
-e HF_TOKEN=$token \
|
||||
-p 8080:80 \
|
||||
-v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0.4 \
|
||||
--model-id $model
|
||||
|
|
|
@ -336,6 +336,13 @@ Options:
|
|||
--otlp-endpoint <OTLP_ENDPOINT>
|
||||
[env: OTLP_ENDPOINT=]
|
||||
|
||||
```
|
||||
## OTLP_SERVICE_NAME
|
||||
```shell
|
||||
--otlp-service-name <OTLP_SERVICE_NAME>
|
||||
[env: OTLP_SERVICE_NAME=]
|
||||
[default: text-generation-inference.router]
|
||||
|
||||
```
|
||||
## CORS_ALLOW_ORIGIN
|
||||
```shell
|
||||
|
|
|
@ -1,38 +1,38 @@
|
|||
import sys
|
||||
import subprocess
|
||||
import contextlib
|
||||
import pytest
|
||||
import asyncio
|
||||
import os
|
||||
import docker
|
||||
import contextlib
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
import time
|
||||
import random
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from docker.errors import NotFound
|
||||
from typing import Optional, List, Dict
|
||||
from syrupy.extensions.json import JSONSnapshotExtension
|
||||
import docker
|
||||
import pytest
|
||||
from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError
|
||||
|
||||
from docker.errors import NotFound
|
||||
from syrupy.extensions.json import JSONSnapshotExtension
|
||||
from text_generation import AsyncClient
|
||||
from text_generation.types import (
|
||||
Response,
|
||||
Details,
|
||||
InputToken,
|
||||
Token,
|
||||
BestOfSequence,
|
||||
Grammar,
|
||||
ChatComplete,
|
||||
ChatCompletionChunk,
|
||||
ChatCompletionComplete,
|
||||
Completion,
|
||||
Details,
|
||||
Grammar,
|
||||
InputToken,
|
||||
Response,
|
||||
Token,
|
||||
)
|
||||
|
||||
DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None)
|
||||
HUGGING_FACE_HUB_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN", None)
|
||||
HF_TOKEN = os.getenv("HF_TOKEN", None)
|
||||
DOCKER_VOLUME = os.getenv("DOCKER_VOLUME", "/data")
|
||||
DOCKER_DEVICES = os.getenv("DOCKER_DEVICES")
|
||||
SYSTEM = os.getenv("SYSTEM", None)
|
||||
|
@ -455,8 +455,8 @@ def launcher(event_loop):
|
|||
if not use_flash_attention:
|
||||
env["USE_FLASH_ATTENTION"] = "false"
|
||||
|
||||
if HUGGING_FACE_HUB_TOKEN is not None:
|
||||
env["HUGGING_FACE_HUB_TOKEN"] = HUGGING_FACE_HUB_TOKEN
|
||||
if HF_TOKEN is not None:
|
||||
env["HF_TOKEN"] = HF_TOKEN
|
||||
|
||||
volumes = []
|
||||
if DOCKER_VOLUME:
|
||||
|
|
|
@ -413,6 +413,9 @@ struct Args {
|
|||
#[clap(long, env)]
|
||||
otlp_endpoint: Option<String>,
|
||||
|
||||
#[clap(default_value = "text-generation-inference.router", long, env)]
|
||||
otlp_service_name: String,
|
||||
|
||||
#[clap(long, env)]
|
||||
cors_allow_origin: Vec<String>,
|
||||
#[clap(long, env)]
|
||||
|
@ -483,6 +486,7 @@ fn shard_manager(
|
|||
max_batch_size: Option<usize>,
|
||||
max_input_tokens: usize,
|
||||
otlp_endpoint: Option<String>,
|
||||
otlp_service_name: String,
|
||||
log_level: LevelFilter,
|
||||
status_sender: mpsc::Sender<ShardStatus>,
|
||||
shutdown: Arc<AtomicBool>,
|
||||
|
@ -548,12 +552,16 @@ fn shard_manager(
|
|||
(None, Some(factor)) => Some((RopeScaling::Linear, factor)),
|
||||
};
|
||||
|
||||
// OpenTelemetry
|
||||
// OpenTelemetry Endpoint
|
||||
if let Some(otlp_endpoint) = otlp_endpoint {
|
||||
shard_args.push("--otlp-endpoint".to_string());
|
||||
shard_args.push(otlp_endpoint);
|
||||
}
|
||||
|
||||
// OpenTelemetry Service Name
|
||||
shard_args.push("--otlp-service-name".to_string());
|
||||
shard_args.push(otlp_service_name);
|
||||
|
||||
// In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
|
||||
shard_args.push("--max-input-tokens".to_string());
|
||||
shard_args.push(max_input_tokens.to_string());
|
||||
|
@ -592,7 +600,7 @@ fn shard_manager(
|
|||
|
||||
// Parse Inference API token
|
||||
if let Ok(api_token) = env::var("HF_API_TOKEN") {
|
||||
envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
|
||||
envs.push(("HF_TOKEN".into(), api_token.into()))
|
||||
};
|
||||
|
||||
// Detect rope scaling
|
||||
|
@ -751,7 +759,10 @@ fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver
|
|||
fn num_cuda_devices() -> Option<usize> {
|
||||
let devices = match env::var("CUDA_VISIBLE_DEVICES") {
|
||||
Ok(devices) => devices,
|
||||
Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
|
||||
Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
|
||||
Ok(devices) => devices,
|
||||
Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
|
||||
}
|
||||
};
|
||||
let n_devices = devices.split(',').count();
|
||||
Some(n_devices)
|
||||
|
@ -824,9 +835,9 @@ fn find_num_shards(
|
|||
let num_shard = match (sharded, num_shard) {
|
||||
(Some(true), None) => {
|
||||
// try to default to the number of available GPUs
|
||||
tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
|
||||
tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
|
||||
let n_devices = num_cuda_devices()
|
||||
.expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
|
||||
.expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
|
||||
if n_devices <= 1 {
|
||||
return Err(LauncherError::NotEnoughCUDADevices(format!(
|
||||
"`sharded` is true but only found {n_devices} CUDA devices"
|
||||
|
@ -925,7 +936,7 @@ fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), L
|
|||
|
||||
// Parse Inference API token
|
||||
if let Ok(api_token) = env::var("HF_API_TOKEN") {
|
||||
envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
|
||||
envs.push(("HF_TOKEN".into(), api_token.into()))
|
||||
};
|
||||
|
||||
// If args.weights_cache_override is some, pass it to the download process
|
||||
|
@ -1035,6 +1046,7 @@ fn spawn_shards(
|
|||
let shutdown = shutdown.clone();
|
||||
let shutdown_sender = shutdown_sender.clone();
|
||||
let otlp_endpoint = args.otlp_endpoint.clone();
|
||||
let otlp_service_name = args.otlp_service_name.clone();
|
||||
let quantize = args.quantize;
|
||||
let speculate = args.speculate;
|
||||
let dtype = args.dtype;
|
||||
|
@ -1074,6 +1086,7 @@ fn spawn_shards(
|
|||
max_batch_size,
|
||||
max_input_tokens,
|
||||
otlp_endpoint,
|
||||
otlp_service_name,
|
||||
max_log_level,
|
||||
status_sender,
|
||||
shutdown,
|
||||
|
@ -1207,6 +1220,12 @@ fn spawn_webserver(
|
|||
router_args.push(otlp_endpoint);
|
||||
}
|
||||
|
||||
// OpenTelemetry
|
||||
let otlp_service_name = args.otlp_service_name;
|
||||
router_args.push("--otlp-service-name".to_string());
|
||||
router_args.push(otlp_service_name);
|
||||
|
||||
|
||||
// CORS origins
|
||||
for origin in args.cors_allow_origin.into_iter() {
|
||||
router_args.push("--cors-allow-origin".to_string());
|
||||
|
@ -1227,7 +1246,7 @@ fn spawn_webserver(
|
|||
|
||||
// Parse Inference API token
|
||||
if let Ok(api_token) = env::var("HF_API_TOKEN") {
|
||||
envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
|
||||
envs.push(("HF_TOKEN".into(), api_token.into()))
|
||||
};
|
||||
|
||||
// Parse Compute type
|
||||
|
|
|
@ -570,7 +570,7 @@ impl ChatCompletion {
|
|||
};
|
||||
Self {
|
||||
id: String::new(),
|
||||
object: "text_completion".into(),
|
||||
object: "chat.completion".into(),
|
||||
created,
|
||||
model,
|
||||
system_fingerprint,
|
||||
|
@ -682,7 +682,7 @@ impl ChatCompletionChunk {
|
|||
};
|
||||
Self {
|
||||
id: String::new(),
|
||||
object: "text_completion".to_string(),
|
||||
object: "chat.completion.chunk".to_string(),
|
||||
created,
|
||||
model,
|
||||
system_fingerprint,
|
||||
|
|
|
@ -65,6 +65,8 @@ struct Args {
|
|||
json_output: bool,
|
||||
#[clap(long, env)]
|
||||
otlp_endpoint: Option<String>,
|
||||
#[clap(default_value = "text-generation-inference.router", long, env)]
|
||||
otlp_service_name: String,
|
||||
#[clap(long, env)]
|
||||
cors_allow_origin: Option<Vec<String>>,
|
||||
#[clap(long, env)]
|
||||
|
@ -107,6 +109,7 @@ async fn main() -> Result<(), RouterError> {
|
|||
validation_workers,
|
||||
json_output,
|
||||
otlp_endpoint,
|
||||
otlp_service_name,
|
||||
cors_allow_origin,
|
||||
ngrok,
|
||||
ngrok_authtoken,
|
||||
|
@ -117,7 +120,7 @@ async fn main() -> Result<(), RouterError> {
|
|||
} = args;
|
||||
|
||||
// Launch Tokio runtime
|
||||
init_logging(otlp_endpoint, json_output);
|
||||
init_logging(otlp_endpoint, otlp_service_name, json_output);
|
||||
|
||||
// Validate args
|
||||
if max_input_tokens >= max_total_tokens {
|
||||
|
@ -156,7 +159,7 @@ async fn main() -> Result<(), RouterError> {
|
|||
});
|
||||
|
||||
// Parse Huggingface hub token
|
||||
let authorization_token = std::env::var("HUGGING_FACE_HUB_TOKEN").ok();
|
||||
let authorization_token = std::env::var("HF_TOKEN").or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN")).ok();
|
||||
|
||||
// Tokenizer instance
|
||||
// This will only be used to validate payloads
|
||||
|
@ -367,10 +370,11 @@ async fn main() -> Result<(), RouterError> {
|
|||
|
||||
/// Init logging using env variables LOG_LEVEL and LOG_FORMAT:
|
||||
/// - otlp_endpoint is an optional URL to an Open Telemetry collector
|
||||
/// - otlp_service_name service name to appear in APM
|
||||
/// - LOG_LEVEL may be TRACE, DEBUG, INFO, WARN or ERROR (default to INFO)
|
||||
/// - LOG_FORMAT may be TEXT or JSON (default to TEXT)
|
||||
/// - LOG_COLORIZE may be "false" or "true" (default to "true" or ansi supported platforms)
|
||||
fn init_logging(otlp_endpoint: Option<String>, json_output: bool) {
|
||||
fn init_logging(otlp_endpoint: Option<String>, otlp_service_name: String, json_output: bool) {
|
||||
let mut layers = Vec::new();
|
||||
|
||||
// STDOUT/STDERR layer
|
||||
|
@ -401,7 +405,7 @@ fn init_logging(otlp_endpoint: Option<String>, json_output: bool) {
|
|||
trace::config()
|
||||
.with_resource(Resource::new(vec![KeyValue::new(
|
||||
"service.name",
|
||||
"text-generation-inference.router",
|
||||
otlp_service_name,
|
||||
)]))
|
||||
.with_sampler(Sampler::AlwaysOn),
|
||||
)
|
||||
|
|
|
@ -42,6 +42,7 @@ def serve(
|
|||
logger_level: str = "INFO",
|
||||
json_output: bool = False,
|
||||
otlp_endpoint: Optional[str] = None,
|
||||
otlp_service_name: str = "text-generation-inference.server",
|
||||
max_input_tokens: Optional[int] = None,
|
||||
):
|
||||
if sharded:
|
||||
|
@ -76,7 +77,7 @@ def serve(
|
|||
|
||||
# Setup OpenTelemetry distributed tracing
|
||||
if otlp_endpoint is not None:
|
||||
setup_tracing(shard=os.getenv("RANK", 0), otlp_endpoint=otlp_endpoint)
|
||||
setup_tracing(otlp_service_name=otlp_service_name, otlp_endpoint=otlp_endpoint)
|
||||
|
||||
# Downgrade enum into str for easier management later on
|
||||
quantize = None if quantize is None else quantize.value
|
||||
|
|
|
@ -54,10 +54,8 @@ class UDSOpenTelemetryAioServerInterceptor(OpenTelemetryAioServerInterceptor):
|
|||
)
|
||||
|
||||
|
||||
def setup_tracing(shard: int, otlp_endpoint: str):
|
||||
resource = Resource.create(
|
||||
attributes={"service.name": f"text-generation-inference.server-{shard}"}
|
||||
)
|
||||
def setup_tracing(otlp_service_name: str, otlp_endpoint: str):
|
||||
resource = Resource.create(attributes={"service.name": otlp_service_name})
|
||||
span_exporter = OTLPSpanExporter(endpoint=otlp_endpoint, insecure=True)
|
||||
span_processor = BatchSpanProcessor(span_exporter)
|
||||
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import torch
|
||||
from loguru import logger
|
||||
import subprocess
|
||||
|
||||
|
||||
def is_xpu_available():
|
||||
|
@ -19,8 +20,12 @@ def get_cuda_free_memory(device, memory_fraction):
|
|||
|
||||
|
||||
def get_xpu_free_memory(device, memory_fraction):
|
||||
total_gpu_memory = torch.xpu.get_device_properties(device).total_memory
|
||||
free_memory = int(total_gpu_memory * 0.5)
|
||||
total_memory = torch.xpu.get_device_properties(device).total_memory
|
||||
device_id = device.index
|
||||
query = f"xpu-smi dump -d {device_id} -m 18 -n 1"
|
||||
output = subprocess.check_output(query.split()).decode("utf-8").split("\n")
|
||||
used_memory = float(output[1].split(",")[-1]) * 1024 * 1024
|
||||
free_memory = int(total_memory * 0.95 - used_memory)
|
||||
return free_memory
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue