feat: add lora support to mistral and refactors

This commit is contained in:
drbh 2024-06-06 22:44:58 +00:00
parent 9c45d34983
commit de56a81c5c
4 changed files with 160 additions and 27 deletions

View File

@ -168,9 +168,12 @@ def download_weights(
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
pass
else:
utils.peft.download_peft(
model_id, revision, trust_remote_code=trust_remote_code
)
try:
utils.peft.download_peft(
model_id, revision, trust_remote_code=trust_remote_code
)
except Exception:
pass
try:
import json

View File

@ -38,6 +38,8 @@ from text_generation_server.layers import (
TensorParallelEmbedding,
SpeculativeHead,
get_linear,
TensorParallelMultiAdapterLinear,
TensorParallelAdapterRowLinear,
)
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
@ -107,12 +109,7 @@ class MistralConfig(PretrainedConfig):
class MistralAttention(torch.nn.Module):
def __init__(
self,
prefix: str,
config,
weights,
):
def __init__(self, prefix: str, config, weights, layer_id):
super().__init__()
self.max_past = (
config.sliding_window if config.sliding_window is not None else -1
@ -140,7 +137,7 @@ class MistralAttention(torch.nn.Module):
config.num_key_value_heads // weights.process_group.size()
)
self.query_key_value = TensorParallelColumnLinear.load_multi(
query_key_value = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
@ -148,12 +145,31 @@ class MistralAttention(torch.nn.Module):
bias=False,
)
self.o_proj = TensorParallelRowLinear.load(
head_size = config.hidden_size // config.num_attention_heads
self.query_key_value = TensorParallelMultiAdapterLinear.load(
query_key_value,
layer_id,
["q_proj", "k_proj", "v_proj"],
sizes=[
head_size * config.num_attention_heads,
head_size * config.num_key_value_heads,
head_size * config.num_key_value_heads,
],
process_group=weights.process_group,
)
o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
)
self.o_proj = TensorParallelAdapterRowLinear.load(
o_proj,
layer_id,
"o_proj",
process_group=weights.process_group,
)
self.num_groups = self.num_heads // self.num_key_value_heads
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
@ -171,8 +187,9 @@ class MistralAttention(torch.nn.Module):
input_lengths,
max_s,
prefill_cache_indices,
adapter_data,
):
qkv = self.query_key_value(hidden_states)
qkv = self.query_key_value(hidden_states, adapter_data)
query, kv = qkv.split(
[
self.head_size * self.num_heads,
@ -224,11 +241,13 @@ class MistralAttention(torch.nn.Module):
max_s,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
return self.o_proj(
attn_output.view(-1, self.num_heads * self.head_size), adapter_data
)
class MistralMLP(nn.Module):
def __init__(self, prefix, config, weights):
def __init__(self, prefix, config, weights, layer_id):
super().__init__()
self.hidden_act = config.hidden_act
self.act = (
@ -244,19 +263,37 @@ class MistralMLP(nn.Module):
)
)
# Fuse gate and up proj
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights,
dim=0,
bias=False,
)
self.down_proj = TensorParallelRowLinear.load(
self.gate_up_proj = TensorParallelMultiAdapterLinear.load(
gate_up_proj,
layer_id,
["gate_proj", "up_proj"],
sizes=[
config.intermediate_size,
config.intermediate_size,
],
process_group=weights.process_group,
)
down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=False,
)
self.down_proj = TensorParallelAdapterRowLinear.load(
down_proj,
layer_id,
"down_proj",
process_group=weights.process_group,
)
self.intermediate_size = (
config.intermediate_size // weights.process_group.size()
)
@ -264,7 +301,7 @@ class MistralMLP(nn.Module):
# TODO: This is a hotfix to be removed & properly refactored.
self.quantize = config.quantize
def forward(self, hidden_states):
def forward(self, hidden_states, adapter_data):
if (
SYSTEM == "rocm"
and self.hidden_act == "silu"
@ -278,20 +315,27 @@ class MistralMLP(nn.Module):
device="cuda",
)
_custom_C.LLMM_Silu(self.gate_up_proj.linear.weight, hidden_states, out, 8)
return self.down_proj(out)
return self.down_proj(out, adapter_data)
else:
gate_up_states = self.gate_up_proj(hidden_states)
gate_up_states = self.gate_up_proj(hidden_states, adapter_data)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
return self.down_proj(
self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], adapter_data
)
class MistralLayer(nn.Module):
def __init__(self, prefix, config, weights):
def __init__(self, prefix, config, weights, layer_id):
super().__init__()
self.self_attn = MistralAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
prefix=f"{prefix}.self_attn",
config=config,
weights=weights,
layer_id=layer_id,
)
self.mlp = MistralMLP(
prefix=f"{prefix}.mlp", config=config, weights=weights, layer_id=layer_id
)
self.mlp = MistralMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.input_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
@ -315,6 +359,7 @@ class MistralLayer(nn.Module):
input_lengths,
max_s,
prefill_cache_indices,
adapter_data,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
@ -330,6 +375,7 @@ class MistralLayer(nn.Module):
input_lengths,
max_s,
prefill_cache_indices,
adapter_data,
)
# faster post attention rms norm
@ -337,7 +383,7 @@ class MistralLayer(nn.Module):
attn_output, res
)
mlp_output = self.mlp(normed_attn_res_output)
mlp_output = self.mlp(normed_attn_res_output, adapter_data)
return mlp_output, attn_res
@ -355,6 +401,7 @@ class MistralModel(torch.nn.Module):
prefix=f"{prefix}.layers.{layer_id}",
config=config,
weights=weights,
layer_id=layer_id,
)
for layer_id in range(config.num_hidden_layers)
]
@ -381,6 +428,7 @@ class MistralModel(torch.nn.Module):
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
adapter_data: Optional[torch.Tensor] = None,
):
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward
@ -403,6 +451,7 @@ class MistralModel(torch.nn.Module):
input_lengths,
max_s,
prefill_cache_indices,
adapter_data,
)
hidden_states, _ = self.norm(hidden_states, residual)
@ -454,6 +503,7 @@ class FlashMistralForCausalLM(torch.nn.Module):
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
true_max_s = max_s
if prefill_cache_indices is not None:
@ -476,6 +526,7 @@ class FlashMistralForCausalLM(torch.nn.Module):
max_s,
true_max_s,
prefill_cache_indices,
adapter_data,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]

View File

@ -3,7 +3,7 @@ import torch.distributed
from opentelemetry import trace
from transformers import AutoTokenizer, AutoConfig
from typing import Optional, Tuple
from typing import Optional, Tuple, Dict, List
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.flash_causal_lm import set_sliding_window
@ -21,6 +21,31 @@ from text_generation_server.utils.import_utils import SYSTEM
tracer = trace.get_tracer(__name__)
Q_PROJ = "q_proj"
K_PROJ = "k_proj"
V_PROJ = "v_proj"
O_PROJ = "o_proj"
GATE_PROJ = "gate_proj"
UP_PROJ = "up_proj"
DOWN_PROJ = "down_proj"
LM_HEAD = "lm_head"
# TODO(travis): re-enable LM_HEAD after resolving issues with outputs
ADAPTER_LAYERS = [
Q_PROJ,
K_PROJ,
V_PROJ,
O_PROJ,
GATE_PROJ,
UP_PROJ,
DOWN_PROJ,
] # LM_HEAD
ROW_PARALLEL = {O_PROJ, DOWN_PROJ, LM_HEAD}
class BaseFlashMistral(FlashCausalLM):
def __init__(
self,
@ -99,6 +124,62 @@ class BaseFlashMistral(FlashCausalLM):
model.model.head_size,
)
@property
def supports_adapter_loading(self) -> bool:
return True
def adapter_target_to_layer(self) -> Dict[str, Tuple[str, torch.Tensor]]:
layer_weights = {}
prefix = "model.layers"
for i, layer in enumerate(self.model.model.layers):
layer_weights[(i, Q_PROJ)] = (
f"{prefix}.{i}.self_attn.q_proj",
layer.self_attn.query_key_value,
)
layer_weights[(i, K_PROJ)] = (
f"{prefix}.{i}.self_attn.k_proj",
layer.self_attn.query_key_value,
)
layer_weights[(i, V_PROJ)] = (
f"{prefix}.{i}.self_attn.v_proj",
layer.self_attn.query_key_value,
)
layer_weights[(i, O_PROJ)] = (
f"{prefix}.{i}.self_attn.o_proj",
layer.self_attn.o_proj,
)
layer_weights[(i, GATE_PROJ)] = (
f"{prefix}.{i}.mlp.gate_proj",
layer.mlp.gate_up_proj,
)
layer_weights[(i, UP_PROJ)] = (
f"{prefix}.{i}.mlp.up_proj",
layer.mlp.gate_up_proj,
)
layer_weights[(i, DOWN_PROJ)] = (
f"{prefix}.{i}.mlp.down_proj",
layer.mlp.down_proj,
)
layer_weights[(0, LM_HEAD)] = ("lm_head", self.model.lm_head)
return layer_weights
@property
def adapter_layers(self) -> List[str]:
return ADAPTER_LAYERS
@property
def default_traced_adapter_layers(self) -> List[str]:
return [Q_PROJ, V_PROJ]
def get_num_layers_for_type(self, layer_type: str) -> int:
return 1 if layer_type == LM_HEAD else len(self.model.model.layers)
def is_row_parallel(self, layer_type: str) -> bool:
return layer_type in ROW_PARALLEL
class FlashMistral(BaseFlashMistral):
def __init__(
@ -111,7 +192,6 @@ class FlashMistral(BaseFlashMistral):
trust_remote_code: bool = False,
):
super(FlashMistral, self).__init__(
model_id=model_id,
config_cls=MistralConfig,
model_cls=FlashMistralForCausalLM,
model_id=model_id,

View File

@ -20,7 +20,6 @@ class FlashMixtral(BaseFlashMistral):
trust_remote_code: bool = False,
):
super(FlashMixtral, self).__init__(
model_id=model_id,
config_cls=MixtralConfig,
model_cls=FlashMixtralForCausalLM,
model_id=model_id,