feat(server): optimize dist ops (#434)

This commit is contained in:
OlivierDehaene 2023-06-09 11:55:29 +02:00 committed by GitHub
parent abd58ff82c
commit e496c9ba5b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 38 additions and 7 deletions

View File

@ -265,7 +265,8 @@ class FlashNeoXLayer(nn.Module):
mlp_output = self.mlp(ln2_hidden_states) mlp_output = self.mlp(ln2_hidden_states)
intermediate = mlp_output + attn_output intermediate = mlp_output + attn_output
torch.distributed.all_reduce(intermediate, group=self.process_group) if self.process_group.size() > 1:
torch.distributed.all_reduce(intermediate, group=self.process_group)
return intermediate + hidden_states, None return intermediate + hidden_states, None
else: else:

View File

@ -440,7 +440,8 @@ class FlashRWLayer(nn.Module):
mlp_output = self.mlp(ln_hidden_states) mlp_output = self.mlp(ln_hidden_states)
intermediate = mlp_output + attn_output intermediate = mlp_output + attn_output
torch.distributed.all_reduce(intermediate, group=self.process_group) if self.process_group.size() > 1:
torch.distributed.all_reduce(intermediate, group=self.process_group)
return intermediate, residual return intermediate, residual
else: else:
@ -524,7 +525,8 @@ class FlashRWLargeLayer(nn.Module):
intermediate = attn_output + mlp_output intermediate = attn_output + mlp_output
torch.distributed.all_reduce(intermediate, group=self.process_group) if self.process_group.size() > 1:
torch.distributed.all_reduce(intermediate, group=self.process_group)
return intermediate, residual return intermediate, residual

View File

@ -346,7 +346,9 @@ class FlashSantacoderModel(nn.Module):
pre_allocate_past_size: Optional[int] = None, pre_allocate_past_size: Optional[int] = None,
): ):
hidden_states = self.wte(input_ids) + self.wpe(position_ids) hidden_states = self.wte(input_ids) + self.wpe(position_ids)
torch.distributed.all_reduce(hidden_states, group=self.process_group)
if self.process_group.size() > 1:
torch.distributed.all_reduce(hidden_states, group=self.process_group)
# Prefill # Prefill
if past_key_values is None: if past_key_values is None:

View File

@ -158,8 +158,33 @@ class TensorParallelHead(SuperLayer):
) )
def forward(self, input: torch.Tensor) -> torch.Tensor: def forward(self, input: torch.Tensor) -> torch.Tensor:
world_size = self.process_group.size()
if world_size == 1:
return super().forward(input)
if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
out_dim = self.linear.weight.shape[0]
if input.shape[0] == 1:
world_out = input.new_empty(1, out_dim * world_size)
local_out = input.new_empty(1, out_dim)
gather_input = local_out
else:
world_out = input.new_empty(out_dim * world_size, input.shape[0])
gather_input = input.new_empty(out_dim, input.shape[0])
local_out = gather_input.T
torch.mm(input, self.linear.weight.T, out=local_out)
torch.distributed.all_gather_into_tensor(
world_out, gather_input, group=self.process_group
)
if input.shape[0] == 1:
return world_out
return world_out.T
output = super().forward(input) output = super().forward(input)
# Logits are sharded, so we need to gather them
world_output = [ world_output = [
torch.empty_like(output) for _ in range(self.process_group.size()) torch.empty_like(output) for _ in range(self.process_group.size())
] ]
@ -211,7 +236,8 @@ class TensorParallelRowLinear(SuperLayer):
def forward(self, input: torch.Tensor) -> torch.Tensor: def forward(self, input: torch.Tensor) -> torch.Tensor:
out = super().forward(input) out = super().forward(input)
torch.distributed.all_reduce(out, group=self.process_group) if self.process_group.size() > 1:
torch.distributed.all_reduce(out, group=self.process_group)
return out return out
@ -245,7 +271,7 @@ class TensorParallelEmbedding(nn.Module):
input - self.min_id, input - self.min_id,
) )
out = torch.nn.functional.embedding(input, self.weight) out = torch.nn.functional.embedding(input, self.weight)
if self.reduce: if self.reduce and self.process_group.size() > 1:
torch.distributed.all_reduce(out, group=self.process_group) torch.distributed.all_reduce(out, group=self.process_group)
return out return out