Add support for Deepseek V2 (#2224)
Deepseek V2 is a MoE model from Deepseek. Relevant variations compared to other models: - Grouped top-K in expert selection. - mscale in yarn is calculated using the `mscale` and `mscale_all_dim` configuration options. - `mscale_all_dim` is also used in scaling attention softmax. - Permuting of the query/key representations before applying rotary embeddings. - Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`). So, we need weight loads that supports quantized weights. To this end `{Weights,WeightLoader}.get_weight` was added. - The query/key head dimensionality differs from that of the value, so we need to pad during attention. - Heads with size 192, needs an extension to our paged attention fork and we need to ensure that the KV cache is allocated with the correct size. - Shared experts.
This commit is contained in:
parent
68a9685f1b
commit
e52be9bba2
|
@ -5,6 +5,7 @@ Text Generation Inference enables serving optimized models on specific hardware
|
|||
|
||||
## Supported Models
|
||||
|
||||
- [Deepseek V2](https://huggingface.co/deepseek-ai/DeepSeek-V2)
|
||||
- [Idefics 2](https://huggingface.co/HuggingFaceM4/idefics2-8b) (Multimodal)
|
||||
- [Llava Next (1.6)](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) (Multimodal)
|
||||
- [Llama](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
||||
|
|
|
@ -0,0 +1,89 @@
|
|||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.1875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": -1.5546875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 549,
|
||||
"logprob": -2.84375,
|
||||
"special": false,
|
||||
"text": "The"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -2.34375,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -0.8359375,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 317,
|
||||
"logprob": -1.0859375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 254,
|
||||
"logprob": -1.5390625,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
},
|
||||
{
|
||||
"id": 1022,
|
||||
"logprob": -1.1875,
|
||||
"special": false,
|
||||
"text": " first"
|
||||
},
|
||||
{
|
||||
"id": 3458,
|
||||
"logprob": -0.35546875,
|
||||
"special": false,
|
||||
"text": " step"
|
||||
},
|
||||
{
|
||||
"id": 279,
|
||||
"logprob": -0.8828125,
|
||||
"special": false,
|
||||
"text": " in"
|
||||
},
|
||||
{
|
||||
"id": 254,
|
||||
"logprob": -0.71484375,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\nThe test request is the first step in the"
|
||||
}
|
|
@ -0,0 +1,89 @@
|
|||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.1875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": 0,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 2143,
|
||||
"logprob": -1.828125,
|
||||
"special": false,
|
||||
"text": " sent"
|
||||
},
|
||||
{
|
||||
"id": 10081,
|
||||
"logprob": -0.36914062,
|
||||
"special": false,
|
||||
"text": " successfully"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 1380,
|
||||
"logprob": -0.38671875,
|
||||
"special": false,
|
||||
"text": "We"
|
||||
},
|
||||
{
|
||||
"id": 543,
|
||||
"logprob": -0.12695312,
|
||||
"special": false,
|
||||
"text": " will"
|
||||
},
|
||||
{
|
||||
"id": 752,
|
||||
"logprob": -0.20117188,
|
||||
"special": false,
|
||||
"text": " get"
|
||||
},
|
||||
{
|
||||
"id": 279,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " in"
|
||||
},
|
||||
{
|
||||
"id": 5402,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " touch"
|
||||
},
|
||||
{
|
||||
"id": 366,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " with"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "Test request sent successfully.\nWe will get in touch with"
|
||||
}
|
|
@ -0,0 +1,358 @@
|
|||
[
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.1875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": -1.5546875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 549,
|
||||
"logprob": -2.8125,
|
||||
"special": false,
|
||||
"text": "The"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -2.375,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -0.890625,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 317,
|
||||
"logprob": -1.1484375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.5390625,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -2.609375,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 327,
|
||||
"logprob": -0.75,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.1171875,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -0.90625,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\nThe test request is a request for a test"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.25,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": -1.5546875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 549,
|
||||
"logprob": -2.8125,
|
||||
"special": false,
|
||||
"text": "The"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -2.375,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -0.890625,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 317,
|
||||
"logprob": -1.1484375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.5390625,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -2.609375,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 327,
|
||||
"logprob": -0.75,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.1171875,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -0.90625,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\nThe test request is a request for a test"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.25,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": -1.5546875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 549,
|
||||
"logprob": -2.8125,
|
||||
"special": false,
|
||||
"text": "The"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -2.375,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -0.890625,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 317,
|
||||
"logprob": -1.1484375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.5390625,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -2.609375,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 327,
|
||||
"logprob": -0.75,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.1171875,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -0.90625,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\nThe test request is a request for a test"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.25,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": -1.5546875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 549,
|
||||
"logprob": -2.8125,
|
||||
"special": false,
|
||||
"text": "The"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -2.375,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -0.890625,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 317,
|
||||
"logprob": -1.1484375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.5390625,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -2.609375,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 327,
|
||||
"logprob": -0.75,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.1171875,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -0.90625,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\nThe test request is a request for a test"
|
||||
}
|
||||
]
|
|
@ -0,0 +1,63 @@
|
|||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def flash_deepseek_v2_handle(launcher):
|
||||
with launcher("deepseek-ai/DeepSeek-V2-Lite", num_shard=2) as handle:
|
||||
yield handle
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
async def flash_deepseek_v2(flash_deepseek_v2_handle):
|
||||
await flash_deepseek_v2_handle.health(300)
|
||||
return flash_deepseek_v2_handle.client
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_deepseek_v2(flash_deepseek_v2, response_snapshot):
|
||||
response = await flash_deepseek_v2.generate(
|
||||
"Test request", max_new_tokens=10, decoder_input_details=True
|
||||
)
|
||||
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_deepseek_v2_all_params(flash_deepseek_v2, response_snapshot):
|
||||
response = await flash_deepseek_v2.generate(
|
||||
"Test request",
|
||||
max_new_tokens=10,
|
||||
repetition_penalty=1.2,
|
||||
return_full_text=True,
|
||||
stop_sequences=["test"],
|
||||
temperature=0.5,
|
||||
top_p=0.9,
|
||||
top_k=10,
|
||||
truncate=5,
|
||||
typical_p=0.9,
|
||||
watermark=True,
|
||||
decoder_input_details=True,
|
||||
seed=0,
|
||||
)
|
||||
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_deepseek_v2_load(
|
||||
flash_deepseek_v2, generate_load, response_snapshot
|
||||
):
|
||||
responses = await generate_load(
|
||||
flash_deepseek_v2, "Test request", max_new_tokens=10, n=4
|
||||
)
|
||||
|
||||
assert len(responses) == 4
|
||||
assert all([r.generated_text == responses[0].generated_text for r in responses])
|
||||
|
||||
assert responses == response_snapshot
|
|
@ -1,14 +1,14 @@
|
|||
commit_cuda := b5dfc61db88a81069e45b44f7cc99bd9e62a60fa
|
||||
commit_cuda := d243e9dc7e2c9c2e36a4150ec8e64809cb55c01b
|
||||
commit_rocm := c6ee53b1be97e3bbc791b95f22827501297f8921
|
||||
build-vllm-cuda:
|
||||
if [ ! -d 'vllm' ]; then \
|
||||
pip install -U ninja packaging --no-cache-dir && \
|
||||
git clone https://github.com/Narsil/vllm.git vllm; \
|
||||
fi
|
||||
cd vllm && git fetch && git checkout $(commit_cuda) && python setup.py build
|
||||
cd vllm && git fetch origin && git checkout $(commit_cuda) && python setup.py build
|
||||
|
||||
install-vllm-cuda: build-vllm-cuda
|
||||
cd vllm && git fetch && git checkout $(commit_cuda) && pip install -e .
|
||||
cd vllm && git fetch origin && git checkout $(commit_cuda) && pip install -e .
|
||||
|
||||
build-vllm-rocm:
|
||||
if [ ! -d 'vllm' ]; then \
|
||||
|
|
|
@ -34,6 +34,30 @@ class Exl2Weight(Weight):
|
|||
class Exl2WeightsLoader(WeightsLoader):
|
||||
"""Loader for exl2-quantized weights."""
|
||||
|
||||
def get_weights(self, weights: "Weights", prefix: str):
|
||||
"""
|
||||
Get weights at the given prefix and apply without tensor paralllism.
|
||||
"""
|
||||
try:
|
||||
q_weight = weights.get_tensor(f"{prefix}.q_weight")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
q_scale = weights.get_tensor(f"{prefix}.q_scale")
|
||||
q_invperm = weights.get_tensor(f"{prefix}.q_invperm")
|
||||
q_scale_max = weights.get_tensor(f"{prefix}.q_scale_max")
|
||||
q_groups = weights.get_tensor(f"{prefix}.q_groups")
|
||||
|
||||
return Exl2Weight(
|
||||
q_weight=q_weight,
|
||||
q_scale=q_scale,
|
||||
q_invperm=q_invperm,
|
||||
q_scale_max=q_scale_max,
|
||||
q_groups=q_groups,
|
||||
)
|
||||
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
weights: Weights,
|
||||
|
@ -43,46 +67,12 @@ class Exl2WeightsLoader(WeightsLoader):
|
|||
raise RuntimeError("Column-packed weights are not supported for exl")
|
||||
|
||||
def get_weights_col(self, weights: Weights, prefix: str):
|
||||
try:
|
||||
q_weight = weights.get_tensor(f"{prefix}.q_weight")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
q_scale = weights.get_tensor(f"{prefix}.q_scale")
|
||||
q_invperm = weights.get_tensor(f"{prefix}.q_invperm")
|
||||
q_scale_max = weights.get_tensor(f"{prefix}.q_scale_max")
|
||||
q_groups = weights.get_tensor(f"{prefix}.q_groups")
|
||||
|
||||
return Exl2Weight(
|
||||
q_weight=q_weight,
|
||||
q_scale=q_scale,
|
||||
q_invperm=q_invperm,
|
||||
q_scale_max=q_scale_max,
|
||||
q_groups=q_groups,
|
||||
)
|
||||
# Sharding is not yet supported, so we return the weights as-is.
|
||||
return self.get_weights(weights, prefix)
|
||||
|
||||
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
|
||||
raise ValueError("get_multi_weights_col is not supported for exl2")
|
||||
|
||||
def get_weights_row(self, weights: Weights, prefix: str):
|
||||
try:
|
||||
q_weight = weights.get_tensor(f"{prefix}.q_weight")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
q_scale = weights.get_tensor(f"{prefix}.q_scale")
|
||||
q_invperm = weights.get_tensor(f"{prefix}.q_invperm")
|
||||
q_scale_max = weights.get_tensor(f"{prefix}.q_scale_max")
|
||||
q_groups = weights.get_tensor(f"{prefix}.q_groups")
|
||||
|
||||
return Exl2Weight(
|
||||
q_weight=q_weight,
|
||||
q_scale=q_scale,
|
||||
q_invperm=q_invperm,
|
||||
q_scale_max=q_scale_max,
|
||||
q_groups=q_groups,
|
||||
)
|
||||
# Sharding is not yet supported, so we return the weights as-is.
|
||||
return self.get_weights(weights, prefix)
|
||||
|
|
|
@ -134,6 +134,115 @@ class GPTQWeightsLoader(WeightsLoader):
|
|||
self.quantize = quantize
|
||||
self.sym = sym
|
||||
|
||||
def get_weights(self, weights: Weights, prefix: str):
|
||||
from text_generation_server.layers.marlin import (
|
||||
can_use_gptq_marlin,
|
||||
repack_gptq_for_marlin,
|
||||
)
|
||||
|
||||
self._get_gptq_params(weights)
|
||||
if can_use_gptq_marlin(
|
||||
bits=self.bits,
|
||||
groupsize=self.groupsize,
|
||||
quant_method=self.quant_method,
|
||||
quantize=self.quantize,
|
||||
sym=self.sym,
|
||||
):
|
||||
log_once(logger.info, "Using GPTQ-Marlin kernels")
|
||||
try:
|
||||
qweight = weights.get_tensor(f"{prefix}.qweight")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{self.quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
|
||||
)
|
||||
|
||||
g_idx = weights.get_tensor(f"{prefix}.g_idx")
|
||||
scales = weights.get_tensor(f"{prefix}.scales")
|
||||
|
||||
return repack_gptq_for_marlin(
|
||||
qweight=qweight,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=self.bits,
|
||||
desc_act=self.desc_act,
|
||||
groupsize=self.groupsize,
|
||||
sym=self.sym,
|
||||
sharded_infeatures=False,
|
||||
)
|
||||
|
||||
use_exllama = True
|
||||
if self.bits != 4:
|
||||
use_exllama = False
|
||||
|
||||
if self.desc_act:
|
||||
log_once(logger.warning, "Disabling exllama because desc_act=True")
|
||||
use_exllama = False
|
||||
|
||||
try:
|
||||
qweight = weights.get_tensor(f"{prefix}.qweight")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
|
||||
)
|
||||
|
||||
if self.quantize == "gptq" and self.quant_method == "gptq":
|
||||
g_idx = weights.get_tensor(f"{prefix}.g_idx")
|
||||
else:
|
||||
g_idx = None
|
||||
|
||||
from text_generation_server.layers.gptq import (
|
||||
HAS_EXLLAMA,
|
||||
CAN_EXLLAMA,
|
||||
GPTQWeight,
|
||||
)
|
||||
|
||||
if use_exllama:
|
||||
if not HAS_EXLLAMA:
|
||||
if CAN_EXLLAMA:
|
||||
log_once(
|
||||
logger.warning,
|
||||
"Exllama GPTQ cuda kernels (which are faster) could have been used, but are not currently installed, try using BUILD_EXTENSIONS=True",
|
||||
)
|
||||
use_exllama = False
|
||||
else:
|
||||
log_once(logger.info, f"Using exllama kernels v{HAS_EXLLAMA}")
|
||||
|
||||
qzeros = weights.get_tensor(f"{prefix}.qzeros")
|
||||
scales = weights.get_tensor(f"{prefix}.scales")
|
||||
|
||||
if use_exllama and g_idx is not None:
|
||||
g_idx = g_idx - g_idx[0]
|
||||
|
||||
if self.quantize == "gptq" and self.quant_method == "awq":
|
||||
log_once(
|
||||
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
|
||||
)
|
||||
from text_generation_server.layers.awq.conversion_utils import (
|
||||
fast_awq_to_gptq,
|
||||
)
|
||||
|
||||
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
|
||||
if use_exllama:
|
||||
g_idx = None
|
||||
else:
|
||||
g_idx = (
|
||||
torch.arange(
|
||||
qweight.shape[0] * (32 // self.bits),
|
||||
device=qweight.device,
|
||||
)
|
||||
// self.groupsize
|
||||
).to(dtype=torch.int32)
|
||||
|
||||
return GPTQWeight(
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=self.bits,
|
||||
groupsize=self.groupsize,
|
||||
use_exllama=use_exllama,
|
||||
)
|
||||
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
weights: Weights,
|
||||
|
|
|
@ -33,6 +33,35 @@ class MarlinWeightsLoader(WeightsLoader):
|
|||
self.bits = bits
|
||||
self.is_marlin_24 = is_marlin_24
|
||||
|
||||
def get_weights(self, weights: "Weights", prefix: str):
|
||||
"""
|
||||
Get weights at the given prefix and apply without tensor paralllism.
|
||||
"""
|
||||
is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
|
||||
if is_marlin_24:
|
||||
try:
|
||||
B = weights.get_tensor(f"{prefix}.B_24")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
B_meta = weights.get_tensor(f"{prefix}.B_meta")
|
||||
s = weights.get_tensor(f"{prefix}.s")
|
||||
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
|
||||
else:
|
||||
try:
|
||||
B = weights.get_tensor(f"{prefix}.B")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `marlin` weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
s = weights.get_tensor(f"{prefix}.s")
|
||||
weight = MarlinWeight(B=B, s=s)
|
||||
|
||||
return weight
|
||||
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
weights: Weights,
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import os
|
||||
import torch
|
||||
from torch import nn
|
||||
from loguru import logger
|
||||
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
|
||||
|
@ -97,6 +98,8 @@ class PositionRotaryEmbedding(nn.Module):
|
|||
)
|
||||
elif rope_scaling["type"] == "yarn":
|
||||
scaling_factor = rope_scaling["factor"]
|
||||
mscale = rope_scaling.get("mscale", 1.0)
|
||||
mscale_all_dim = rope_scaling.get("mscale_all_dim", 0.0)
|
||||
return YarnPositionRotaryEmbedding(
|
||||
dim=2 * inv_freq.shape[0],
|
||||
max_position_embeddings=rope_scaling[
|
||||
|
@ -109,6 +112,8 @@ class PositionRotaryEmbedding(nn.Module):
|
|||
attn_factor=1,
|
||||
beta_fast=32,
|
||||
beta_slow=1,
|
||||
mscale=mscale,
|
||||
mscale_all_dim=mscale_all_dim,
|
||||
)
|
||||
elif rope_scaling["type"] in ["su", "longrope"]:
|
||||
short_factor = torch.tensor(
|
||||
|
@ -181,6 +186,8 @@ class PositionRotaryEmbedding(nn.Module):
|
|||
scaling_factor=scaling_factor,
|
||||
)
|
||||
elif rope_scaling["type"] == "yarn":
|
||||
mscale = rope_scaling.get("mscale", 1.0)
|
||||
mscale_all_dim = rope_scaling.get("mscale_all_dim", 0.0)
|
||||
return YarnPositionRotaryEmbedding(
|
||||
dim=2 * inv_freq.shape[0],
|
||||
max_position_embeddings=rope_scaling[
|
||||
|
@ -193,6 +200,8 @@ class PositionRotaryEmbedding(nn.Module):
|
|||
attn_factor=1,
|
||||
beta_fast=32,
|
||||
beta_slow=1,
|
||||
mscale=mscale,
|
||||
mscale_all_dim=mscale_all_dim,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
|
@ -346,10 +355,10 @@ def linear_ramp_mask(min, max, dim):
|
|||
return ramp_func
|
||||
|
||||
|
||||
def get_mscale(scale=1):
|
||||
def get_mscale(scale: float = 1.0, mscale: float = 1.0):
|
||||
if scale <= 1:
|
||||
return 1.0
|
||||
return 0.1 * math.log(scale) + 1.0
|
||||
return 0.1 * mscale * math.log(scale) + 1.0
|
||||
|
||||
|
||||
class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
||||
|
@ -365,6 +374,8 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
|||
attn_factor,
|
||||
beta_fast,
|
||||
beta_slow,
|
||||
mscale: float,
|
||||
mscale_all_dim: float,
|
||||
):
|
||||
inv_freq = _create_inv_freq(dim, base, device)
|
||||
super().__init__(inv_freq, scaling_factor)
|
||||
|
@ -375,8 +386,12 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
|||
self.attn_factor = attn_factor
|
||||
self.beta_fast = beta_fast
|
||||
self.beta_slow = beta_slow
|
||||
self.mscale_all_dim = mscale_all_dim
|
||||
self.scaling_factor = scaling_factor
|
||||
self.mscale = float(
|
||||
get_mscale(self.scaling_factor) * self.attn_factor
|
||||
get_mscale(self.scaling_factor, mscale)
|
||||
/ get_mscale(self.scaling_factor, mscale_all_dim)
|
||||
* self.attn_factor
|
||||
) # Get n-d magnitude scaling corrected for interpolation
|
||||
|
||||
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
||||
|
@ -387,7 +402,7 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
|||
or self._cos_cached.device != device
|
||||
or self._cos_cached.dtype != dtype
|
||||
):
|
||||
if seqlen > self.max_position_embeddings:
|
||||
if seqlen > self.max_position_embeddings or True:
|
||||
inv_freq_extrapolation = _create_inv_freq(
|
||||
self.dim, self.base, self.inv_freq.device
|
||||
)
|
||||
|
@ -400,6 +415,7 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
|||
self.base,
|
||||
self.max_position_embeddings,
|
||||
)
|
||||
|
||||
inv_freq_mask = (
|
||||
1 - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
|
||||
) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
||||
|
@ -409,9 +425,6 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
|||
)
|
||||
|
||||
self.inv_freq = inv_freq
|
||||
self.mscale = float(
|
||||
get_mscale(self.scaling_factor) * self.attn_factor
|
||||
) # Get n-d magnitude scaling corrected for interpolation
|
||||
|
||||
self._seq_len_cached = seqlen
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
|
|
|
@ -61,6 +61,10 @@ FLASH_ATTENTION = True
|
|||
try:
|
||||
from text_generation_server.models.flash_causal_lm import FlashCausalLM
|
||||
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
|
||||
FlashDeepseekV2ForCausalLM,
|
||||
DeepseekV2Config,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
|
||||
FlashLlamaForCausalLM,
|
||||
)
|
||||
|
@ -141,6 +145,11 @@ if MAMBA_AVAILABLE:
|
|||
|
||||
|
||||
class ModelType(enum.Enum):
|
||||
DEEPSEEK_V2 = {
|
||||
"type": "deepseek_v2",
|
||||
"name": "Deepseek V2",
|
||||
"url": "https://huggingface.co/deepseek-ai/DeepSeek-V2",
|
||||
}
|
||||
IDEFICS2 = {
|
||||
"type": "idefics2",
|
||||
"name": "Idefics 2",
|
||||
|
@ -459,7 +468,40 @@ def get_model(
|
|||
f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
|
||||
)
|
||||
|
||||
if model_type == MAMBA:
|
||||
if model_type == DEEPSEEK_V2:
|
||||
if FLASH_ATTENTION:
|
||||
head_size = max(
|
||||
config_dict.get("qk_nope_dim", 128)
|
||||
+ config_dict.get("qk_rope_dim", 64),
|
||||
config_dict.get("v_head_dim", 128),
|
||||
)
|
||||
return FlashCausalLM(
|
||||
model_id=model_id,
|
||||
model_class=FlashDeepseekV2ForCausalLM,
|
||||
revision=revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
default_dtype=torch.bfloat16,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
config_class=DeepseekV2Config,
|
||||
head_size=head_size,
|
||||
)
|
||||
elif sharded:
|
||||
raise NotImplementedError(
|
||||
FLASH_ATT_ERROR_MESSAGE.format("Sharded Deepseek V2")
|
||||
)
|
||||
else:
|
||||
return CausalLM.fallback(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif model_type == MAMBA:
|
||||
return Mamba(
|
||||
model_id,
|
||||
revision,
|
||||
|
|
|
@ -0,0 +1,983 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2023, 2024 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
from text_generation_server.layers import (
|
||||
FastLinear,
|
||||
SpeculativeHead,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention import (
|
||||
attention,
|
||||
paged_attention,
|
||||
reshape_and_cache,
|
||||
)
|
||||
from text_generation_server.layers.attention.common import Seqlen
|
||||
from text_generation_server.layers.layernorm import FastRMSNorm
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.log import log_once
|
||||
from text_generation_server.utils.weights import Weights
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class DeepseekV2Config(PretrainedConfig):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=102400,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
moe_intermediate_size=1407,
|
||||
num_hidden_layers=30,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=32,
|
||||
n_shared_experts=2,
|
||||
n_routed_experts=160,
|
||||
ep_size=1,
|
||||
routed_scaling_factor=1.0,
|
||||
kv_lora_rank=512,
|
||||
q_lora_rank=1536,
|
||||
qk_rope_head_dim=64,
|
||||
v_head_dim=128,
|
||||
qk_nope_head_dim=128,
|
||||
topk_method="gready",
|
||||
n_group=8,
|
||||
topk_group=3,
|
||||
num_experts_per_tok=6,
|
||||
moe_layer_freq=1,
|
||||
first_k_dense_replace=0,
|
||||
norm_topk_prob=False,
|
||||
scoring_func="softmax",
|
||||
aux_loss_alpha=0.001,
|
||||
seq_aux=True,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=100000,
|
||||
eos_token_id=100001,
|
||||
pretraining_tp=1,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.moe_intermediate_size = moe_intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.n_shared_experts = n_shared_experts
|
||||
self.n_routed_experts = n_routed_experts
|
||||
self.ep_size = ep_size
|
||||
self.routed_scaling_factor = routed_scaling_factor
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.topk_method = topk_method
|
||||
self.n_group = n_group
|
||||
self.topk_group = topk_group
|
||||
self.num_experts_per_tok = num_experts_per_tok
|
||||
self.moe_layer_freq = moe_layer_freq
|
||||
self.first_k_dense_replace = first_k_dense_replace
|
||||
self.norm_topk_prob = norm_topk_prob
|
||||
self.scoring_func = scoring_func
|
||||
self.aux_loss_alpha = aux_loss_alpha
|
||||
self.seq_aux = seq_aux
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.pretraining_tp = pretraining_tp
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
|
||||
if tie_word_embeddings:
|
||||
raise ValueError(
|
||||
"tie_word_embeddings is not supported for Deepseek V2 models."
|
||||
)
|
||||
|
||||
if ep_size != 1:
|
||||
raise ValueError(
|
||||
f"Currently only ep_size == 1 is supported for Deepseek V2 models, was {ep_size}"
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def _load_experts(config, prefix: str, mat: str, weights: Weights):
|
||||
if config.quantize is not None:
|
||||
raise NotImplementedError(
|
||||
"Deepseek V2 does not support weight quantization yet."
|
||||
)
|
||||
|
||||
assert mat in ["gate_proj", "up_proj", "down_proj"]
|
||||
|
||||
world_size = weights.process_group.size()
|
||||
rank = weights.process_group.rank()
|
||||
|
||||
assert (
|
||||
config.moe_intermediate_size % world_size == 0
|
||||
), f"The chosen size {config.moe_intermediate_size} is not compatible with sharding on {world_size} shards"
|
||||
|
||||
block_size = config.moe_intermediate_size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
|
||||
tensor = torch.empty(
|
||||
(config.n_routed_experts * block_size, config.hidden_size),
|
||||
dtype=weights.dtype,
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
for i in range(config.n_routed_experts):
|
||||
slice_ = weights._get_slice(f"{prefix}.{i}.{mat}.weight")
|
||||
|
||||
if mat == "down_proj":
|
||||
expert_slice = slice_[:, start:stop].t().contiguous()
|
||||
else:
|
||||
expert_slice = slice_[start:stop]
|
||||
tensor[i * block_size : (i + 1) * block_size] = expert_slice.to(
|
||||
dtype=weights.dtype
|
||||
).to(device=weights.device)
|
||||
return tensor
|
||||
|
||||
|
||||
class DeepseekV2Attention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
prefix: str,
|
||||
config,
|
||||
weights: Weights,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.kv_lora_rank = config.kv_lora_rank
|
||||
self.q_lora_rank = config.q_lora_rank
|
||||
self.qk_nope_head_dim = config.qk_nope_head_dim
|
||||
self.qk_rope_head_dim = config.qk_rope_head_dim
|
||||
self.head_size = config.qk_nope_head_dim + config.qk_rope_head_dim
|
||||
self.value_head_size = config.v_head_dim
|
||||
self.head_pad_size = max(self.head_size, self.value_head_size)
|
||||
|
||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||
config=config,
|
||||
dim=self.qk_rope_head_dim,
|
||||
base=config.rope_theta,
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
mscale = get_mscale(
|
||||
self.rotary_emb.scaling_factor, self.rotary_emb.mscale_all_dim
|
||||
)
|
||||
self.softmax_scale = self.head_size**-0.5 * mscale * mscale
|
||||
|
||||
if self.num_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
self.num_heads = self.num_heads // weights.process_group.size()
|
||||
self.num_key_value_heads = (
|
||||
config.num_key_value_heads // weights.process_group.size()
|
||||
)
|
||||
|
||||
if self.q_lora_rank is None:
|
||||
self.q_proj = TensorParallelColumnLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.q_proj",
|
||||
weights=weights,
|
||||
bias=config.attention_bias,
|
||||
)
|
||||
else:
|
||||
self.q_a_proj = get_linear(
|
||||
weight=weights.get_weights(f"{prefix}.q_a_proj"),
|
||||
bias=(
|
||||
weights.get_tensor(f"{prefix}.q_a_proj.bias")
|
||||
if config.attention_bias
|
||||
else None
|
||||
),
|
||||
quantize=config.quantize,
|
||||
)
|
||||
self.q_a_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.q_a_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
self.q_b_proj = TensorParallelColumnLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.q_b_proj",
|
||||
weights=weights,
|
||||
bias=config.attention_bias,
|
||||
)
|
||||
|
||||
self.kv_a_proj_with_mqa = get_linear(
|
||||
weight=weights.get_weights(f"{prefix}.kv_a_proj_with_mqa"),
|
||||
bias=(
|
||||
weights.get_tensor(f"{prefix}.kv_a_proj_with_mqa.bias")
|
||||
if config.attention_bias
|
||||
else None
|
||||
),
|
||||
quantize=config.quantize,
|
||||
)
|
||||
|
||||
self.kv_a_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.kv_a_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
self.kv_b_proj = TensorParallelColumnLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.kv_b_proj",
|
||||
weights=weights,
|
||||
bias=config.attention_bias,
|
||||
)
|
||||
|
||||
self.o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.num_groups = self.num_heads // self.num_key_value_heads
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
|
||||
).repeat_interleave(self.num_groups)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
cu_seqlen_prefill: torch.Tensor,
|
||||
kv_cache: Tuple[torch.Tensor, torch.Tensor],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: Seqlen,
|
||||
max_s: int,
|
||||
):
|
||||
if self.q_lora_rank is None:
|
||||
query = self.q_proj(hidden_states)
|
||||
else:
|
||||
query = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))[0])
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
|
||||
_, query_pe = torch.split(
|
||||
query, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
||||
)
|
||||
|
||||
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
||||
compressed_kv, key_pe = torch.split(
|
||||
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
||||
)
|
||||
|
||||
key_pe = key_pe.view(-1, 1, self.qk_rope_head_dim)
|
||||
kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv.contiguous())[0]).view(
|
||||
-1, self.num_key_value_heads, self.qk_nope_head_dim + self.value_head_size
|
||||
)
|
||||
|
||||
key_nope, value = torch.split(
|
||||
kv, [self.qk_nope_head_dim, self.value_head_size], dim=-1
|
||||
)
|
||||
|
||||
batch_size, heads, head_dim = query_pe.shape
|
||||
query_pe = (
|
||||
query_pe.view(batch_size, heads, head_dim // 2, 2)
|
||||
.transpose(2, 3)
|
||||
.reshape(batch_size, heads, head_dim)
|
||||
)
|
||||
batch_size, heads, head_dim = key_pe.shape
|
||||
key_pe = (
|
||||
key_pe.view(batch_size, heads, head_dim // 2, 2)
|
||||
.transpose(2, 3)
|
||||
.reshape(batch_size, heads, head_dim)
|
||||
)
|
||||
self.rotary_emb(query_pe, key_pe, cos, sin)
|
||||
|
||||
query[..., self.qk_nope_head_dim :] = query_pe
|
||||
key = torch.empty_like(query)
|
||||
key[..., : self.qk_nope_head_dim] = key_nope
|
||||
key[..., self.qk_nope_head_dim :] = key_pe
|
||||
|
||||
# We need to pad the heads because Flash Attention does not support
|
||||
# qk and v with different head sizes.
|
||||
query = torch.nn.functional.pad(
|
||||
query, (0, self.head_pad_size - self.head_size), value=0
|
||||
)
|
||||
key = torch.nn.functional.pad(
|
||||
key, (0, self.head_pad_size - self.head_size), value=0
|
||||
)
|
||||
value = torch.nn.functional.pad(
|
||||
value, (0, self.head_pad_size - self.value_head_size), value=0
|
||||
)
|
||||
|
||||
reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots)
|
||||
|
||||
# Output tensor
|
||||
attn_output = torch.empty_like(query)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
# flash attention
|
||||
attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn_output,
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
paged_attention(
|
||||
attn_output,
|
||||
query,
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
# Remove padding.
|
||||
attn_output = attn_output[..., : self.value_head_size]
|
||||
|
||||
return self.o_proj(
|
||||
attn_output.reshape(-1, self.num_heads * self.value_head_size)
|
||||
)
|
||||
|
||||
|
||||
class DeepseekV2MLP(nn.Module):
|
||||
def __init__(self, prefix: str, config, weights, intermediate_size: int):
|
||||
super().__init__()
|
||||
self.hidden_act = config.hidden_act
|
||||
if self.hidden_act != "silu":
|
||||
# Bail out because MoE only supports silu.
|
||||
raise NotImplementedError(
|
||||
"Currently only `silu` is supported as an activation for Deepseek V2."
|
||||
)
|
||||
self.act = ACT2FN[self.hidden_act]
|
||||
|
||||
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
|
||||
weights=weights,
|
||||
dim=0,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.down_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.intermediate_size = intermediate_size // weights.process_group.size()
|
||||
|
||||
# TODO: This is a hotfix to be removed & properly refactored.
|
||||
self.quantize = config.quantize
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, reduce: bool = True):
|
||||
if (
|
||||
SYSTEM == "rocm"
|
||||
and self.hidden_act == "silu"
|
||||
and hidden_states.shape[0] == 1
|
||||
and not self.quantize
|
||||
):
|
||||
out = torch.empty(
|
||||
hidden_states.shape[0],
|
||||
self.intermediate_size,
|
||||
dtype=hidden_states.dtype,
|
||||
device="cuda",
|
||||
)
|
||||
_custom_C.LLMM_Silu(self.gate_up_proj.linear.weight, hidden_states, out, 8)
|
||||
return self.down_proj(out, reduce=reduce)
|
||||
else:
|
||||
gate_up_states = self.gate_up_proj(hidden_states)
|
||||
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
|
||||
return self.down_proj(
|
||||
self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], reduce=reduce
|
||||
)
|
||||
|
||||
|
||||
class BlockSparseMoE(nn.Module):
|
||||
def __init__(self, prefix, config: DeepseekV2Config, weights):
|
||||
super().__init__()
|
||||
|
||||
self.hidden_dim = config.hidden_size
|
||||
self.moe_intermediate_size = (
|
||||
config.moe_intermediate_size // weights.process_group.size()
|
||||
)
|
||||
self.n_routed_experts = config.n_routed_experts
|
||||
self.n_expert_group = config.n_group
|
||||
self.topk_group = config.topk_group
|
||||
self.top_k = config.num_experts_per_tok
|
||||
self.norm_topk_prob = config.norm_topk_prob
|
||||
self.routed_scaling_factor = config.routed_scaling_factor
|
||||
|
||||
gate_proj = _load_experts(
|
||||
config, f"{prefix}.experts", "gate_proj", weights
|
||||
).view(self.n_routed_experts, self.moe_intermediate_size, self.hidden_dim)
|
||||
|
||||
up_proj = _load_experts(config, f"{prefix}.experts", "up_proj", weights).view(
|
||||
self.n_routed_experts, self.moe_intermediate_size, self.hidden_dim
|
||||
)
|
||||
|
||||
self.gate_up_proj = torch.cat([gate_proj, up_proj], dim=1)
|
||||
|
||||
self.down_proj = (
|
||||
_load_experts(config, f"{prefix}.experts", "down_proj", weights)
|
||||
.view(self.n_routed_experts, self.moe_intermediate_size, self.hidden_dim)
|
||||
.transpose(1, 2)
|
||||
.contiguous()
|
||||
)
|
||||
|
||||
# Gating
|
||||
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
|
||||
|
||||
if config.n_shared_experts is not None:
|
||||
self.shared_experts = DeepseekV2MLP(
|
||||
prefix=f"{prefix}.shared_experts",
|
||||
config=config,
|
||||
weights=weights,
|
||||
intermediate_size=config.moe_intermediate_size
|
||||
* config.n_shared_experts,
|
||||
)
|
||||
else:
|
||||
self.shared_experts = None
|
||||
|
||||
self.process_group = weights.process_group
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
if self.shared_experts is not None:
|
||||
shared_output = self.shared_experts(x, reduce=False)
|
||||
else:
|
||||
shared_output = None
|
||||
|
||||
router_logits = self.gate(x)
|
||||
topk_weights, topk_ids = grouped_topk(
|
||||
x,
|
||||
router_logits,
|
||||
self.top_k,
|
||||
renormalize=self.norm_topk_prob,
|
||||
num_expert_group=self.n_expert_group,
|
||||
topk_group=self.topk_group,
|
||||
)
|
||||
out = (
|
||||
fused_experts(
|
||||
x,
|
||||
self.gate_up_proj,
|
||||
self.down_proj,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inplace=True,
|
||||
)
|
||||
* self.routed_scaling_factor
|
||||
)
|
||||
|
||||
if shared_output is not None:
|
||||
out = out + shared_output
|
||||
|
||||
# Reduce sum
|
||||
if self.process_group.size() > 1:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
|
||||
return out.view(*x.shape)
|
||||
|
||||
|
||||
class DenseMoE(nn.Module):
|
||||
def __init__(self, prefix: str, config: DeepseekV2Config, weights: Weights):
|
||||
super().__init__()
|
||||
|
||||
self.hidden_dim = config.hidden_size
|
||||
self.moe_intermediate_size = config.moe_intermediate_size
|
||||
self.n_routed_experts = config.n_routed_experts
|
||||
self.n_expert_group = config.n_group
|
||||
self.topk_group = config.topk_group
|
||||
self.top_k = config.num_experts_per_tok
|
||||
self.norm_topk_prob = config.norm_topk_prob
|
||||
self.routed_scaling_factor = config.routed_scaling_factor
|
||||
|
||||
# Gating
|
||||
#
|
||||
# Seems like no one quantizes the gate.
|
||||
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
|
||||
|
||||
self.experts = [
|
||||
DeepseekV2MLP(
|
||||
f"{prefix}.experts.{i}", config, weights, self.moe_intermediate_size
|
||||
)
|
||||
for i in range(self.n_routed_experts)
|
||||
]
|
||||
|
||||
if config.n_shared_experts is not None:
|
||||
self.shared_experts = DeepseekV2MLP(
|
||||
prefix=f"{prefix}.shared_experts",
|
||||
config=config,
|
||||
weights=weights,
|
||||
intermediate_size=config.moe_intermediate_size
|
||||
* config.n_shared_experts,
|
||||
)
|
||||
else:
|
||||
self.shared_experts = None
|
||||
|
||||
self.process_group = weights.process_group
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
x: (sequence_length, model_dim)
|
||||
gate_logits: (sequence_length, n_experts)
|
||||
"""
|
||||
# optional reshape
|
||||
input_shape = x.shape
|
||||
x = x.view(-1, input_shape[-1])
|
||||
|
||||
if self.shared_experts is not None:
|
||||
shared_output = self.shared_experts(x, reduce=False)
|
||||
else:
|
||||
shared_output = None
|
||||
|
||||
# gate_logits: (sequence_length, n_experts)
|
||||
router_logits = self.gate(x)
|
||||
|
||||
topk_weights, topk_ids = grouped_topk(
|
||||
x,
|
||||
router_logits,
|
||||
self.top_k,
|
||||
renormalize=self.norm_topk_prob,
|
||||
num_expert_group=self.n_expert_group,
|
||||
topk_group=self.topk_group,
|
||||
)
|
||||
|
||||
out = self.moe_infer_gpu(x, topk_ids, topk_weights) * self.routed_scaling_factor
|
||||
|
||||
if shared_output is not None:
|
||||
out = out + shared_output
|
||||
|
||||
# Reduce sum
|
||||
if self.process_group.size() > 1:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
|
||||
return out
|
||||
|
||||
def moe_infer_gpu(
|
||||
self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor
|
||||
):
|
||||
weights = torch.zeros(
|
||||
topk_ids.shape[0], len(self.experts), dtype=x.dtype, device=x.device
|
||||
)
|
||||
weights.scatter_(1, topk_ids, topk_weight)
|
||||
|
||||
out = x.new_zeros(x.shape[0], self.hidden_dim)
|
||||
for i, expert in enumerate(self.experts):
|
||||
# Add expert output to out with masking
|
||||
out += expert(x, reduce=False) * weights[:, i].view(-1, 1)
|
||||
return out
|
||||
|
||||
|
||||
class DeepseekV2Layer(nn.Module):
|
||||
def __init__(self, prefix, layer_id, config, weights):
|
||||
super().__init__()
|
||||
prefix = f"{prefix}.layers.{layer_id}"
|
||||
|
||||
self.self_attn = DeepseekV2Attention(
|
||||
prefix=f"{prefix}.self_attn",
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
if (
|
||||
config.n_routed_experts is not None
|
||||
and layer_id >= config.first_k_dense_replace
|
||||
and layer_id % config.moe_layer_freq == 0
|
||||
):
|
||||
moe_cls = BlockSparseMoE if config.quantize is None else DenseMoE
|
||||
self.mlp = moe_cls(f"{prefix}.mlp", config, weights)
|
||||
else:
|
||||
self.mlp = DeepseekV2MLP(
|
||||
prefix=f"{prefix}.mlp",
|
||||
config=config,
|
||||
weights=weights,
|
||||
intermediate_size=config.intermediate_size,
|
||||
)
|
||||
|
||||
self.input_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: torch.Tensor,
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
cu_seqlen_prefill: torch.Tensor,
|
||||
kv_cache,
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: Seqlen,
|
||||
max_s: int,
|
||||
):
|
||||
normed_hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
||||
|
||||
# Self Attention
|
||||
attn_output = self.self_attn(
|
||||
normed_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
# faster post attention rms norm
|
||||
normed_attn_res_output, residual = self.post_attention_layernorm(
|
||||
attn_output, residual
|
||||
)
|
||||
|
||||
output = self.mlp(normed_attn_res_output)
|
||||
|
||||
return output, residual
|
||||
|
||||
|
||||
class DeepseekV2Model(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights: Weights):
|
||||
super().__init__()
|
||||
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=f"{prefix}.embed_tokens", weights=weights
|
||||
)
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
DeepseekV2Layer(
|
||||
prefix,
|
||||
layer_id,
|
||||
config,
|
||||
weights,
|
||||
)
|
||||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
self.head_size = self.layers[0].self_attn.head_size
|
||||
self.num_heads = self.layers[0].self_attn.num_heads
|
||||
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
position_ids, max_s, hidden_states.dtype
|
||||
)
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashDeepseekV2ForCausalLM(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights: Weights):
|
||||
super().__init__()
|
||||
|
||||
self.model = DeepseekV2Model(
|
||||
"model" if not prefix else f"{prefix}.model", config, weights
|
||||
)
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
config,
|
||||
prefix="lm_head" if not prefix else f"{prefix}.lm_head",
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor],
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
adapter_data: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
hidden_states = self.model(
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits, speculative_logits = self.lm_head(hidden_states)
|
||||
return logits, speculative_logits
|
||||
|
||||
|
||||
# Functions below are from vLLM:
|
||||
#
|
||||
# https://github.com/vllm-project/vllm/blob/f7160d946a0a07703e72d81ba9ecf3913f192605/vllm/model_executor/layers/fused_moe/fused_moe.py#L397
|
||||
#
|
||||
# Remove after we have synced our version with upstream.
|
||||
|
||||
|
||||
def grouped_topk(
|
||||
hidden_states: torch.Tensor,
|
||||
gating_output: torch.Tensor,
|
||||
topk: int,
|
||||
renormalize: bool,
|
||||
num_expert_group: int = 0,
|
||||
topk_group: int = 0,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
scores = torch.softmax(gating_output, dim=-1)
|
||||
num_token = scores.shape[0]
|
||||
group_scores = (
|
||||
scores.view(num_token, num_expert_group, -1).max(dim=-1).values
|
||||
) # [n, n_group]
|
||||
group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[
|
||||
1
|
||||
] # [n, top_k_group]
|
||||
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
||||
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
||||
score_mask = (
|
||||
group_mask.unsqueeze(-1)
|
||||
.expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group)
|
||||
.reshape(num_token, -1)
|
||||
) # [n, e]
|
||||
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
|
||||
topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)
|
||||
|
||||
if renormalize:
|
||||
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
|
||||
|
||||
return topk_weights, topk_ids
|
||||
|
||||
|
||||
def get_default_config(
|
||||
M: int,
|
||||
E: int,
|
||||
N: int,
|
||||
K: int,
|
||||
topk: int,
|
||||
dtype: Optional[str],
|
||||
) -> Dict[str, int]:
|
||||
config = {
|
||||
"BLOCK_SIZE_M": 64,
|
||||
"BLOCK_SIZE_N": 64,
|
||||
"BLOCK_SIZE_K": 32,
|
||||
"GROUP_SIZE_M": 8,
|
||||
}
|
||||
if M <= E:
|
||||
config = {
|
||||
"BLOCK_SIZE_M": 16,
|
||||
"BLOCK_SIZE_N": 32,
|
||||
"BLOCK_SIZE_K": 64,
|
||||
"GROUP_SIZE_M": 1,
|
||||
}
|
||||
return config
|
||||
|
||||
|
||||
def fused_experts(
|
||||
hidden_states: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
inplace: bool = False,
|
||||
override_config: Optional[Dict[str, Any]] = None,
|
||||
use_fp8: bool = False,
|
||||
w1_scale: Optional[torch.Tensor] = None,
|
||||
w2_scale: Optional[torch.Tensor] = None,
|
||||
a1_scale: Optional[torch.Tensor] = None,
|
||||
a2_scale: Optional[torch.Tensor] = None,
|
||||
):
|
||||
# Check constraints.
|
||||
assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
|
||||
assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
|
||||
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
|
||||
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
|
||||
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
|
||||
assert hidden_states.dtype in [torch.float32, torch.float16, torch.bfloat16]
|
||||
|
||||
import triton.language as tl
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
||||
get_moe_configs,
|
||||
invoke_fused_moe_kernel,
|
||||
moe_align_block_size,
|
||||
)
|
||||
|
||||
M, _ = hidden_states.shape
|
||||
E, N, _ = w1.shape
|
||||
|
||||
if override_config:
|
||||
config = override_config
|
||||
else:
|
||||
# First try to load optimal config from the file
|
||||
configs = get_moe_configs(E, w2.shape[2], "float8" if use_fp8 else None)
|
||||
|
||||
if configs:
|
||||
# If an optimal configuration map has been found, look up the
|
||||
# optimal config
|
||||
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
|
||||
else:
|
||||
# Else use the default config
|
||||
config = get_default_config(
|
||||
M, E, N, w1.shape[2], topk_ids.shape[1], "float8" if use_fp8 else None
|
||||
)
|
||||
|
||||
intermediate_cache1 = torch.empty(
|
||||
(M, topk_ids.shape[1], N),
|
||||
device=hidden_states.device,
|
||||
dtype=hidden_states.dtype,
|
||||
)
|
||||
intermediate_cache2 = torch.empty(
|
||||
(M * topk_ids.shape[1], N // 2),
|
||||
device=hidden_states.device,
|
||||
dtype=hidden_states.dtype,
|
||||
)
|
||||
intermediate_cache3 = torch.empty(
|
||||
(M, topk_ids.shape[1], w2.shape[1]),
|
||||
device=hidden_states.device,
|
||||
dtype=hidden_states.dtype,
|
||||
)
|
||||
|
||||
sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
|
||||
topk_ids, config["BLOCK_SIZE_M"], E
|
||||
)
|
||||
compute_type = tl.bfloat16 if hidden_states.dtype == torch.bfloat16 else tl.float16
|
||||
|
||||
invoke_fused_moe_kernel(
|
||||
hidden_states,
|
||||
w1,
|
||||
intermediate_cache1,
|
||||
a1_scale,
|
||||
w1_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
sorted_token_ids,
|
||||
expert_ids,
|
||||
num_tokens_post_padded,
|
||||
False,
|
||||
topk_ids.shape[1],
|
||||
config,
|
||||
compute_type=compute_type,
|
||||
use_fp8=use_fp8,
|
||||
)
|
||||
|
||||
ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, N))
|
||||
|
||||
invoke_fused_moe_kernel(
|
||||
intermediate_cache2,
|
||||
w2,
|
||||
intermediate_cache3,
|
||||
a2_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
sorted_token_ids,
|
||||
expert_ids,
|
||||
num_tokens_post_padded,
|
||||
True,
|
||||
1,
|
||||
config,
|
||||
compute_type=compute_type,
|
||||
use_fp8=use_fp8,
|
||||
)
|
||||
|
||||
if inplace:
|
||||
return torch.sum(
|
||||
intermediate_cache3.view(*intermediate_cache3.shape),
|
||||
dim=1,
|
||||
out=hidden_states,
|
||||
)
|
||||
return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
|
|
@ -839,7 +839,9 @@ class FlashCausalLM(Model):
|
|||
default_dtype=torch.float16,
|
||||
aliases=None,
|
||||
# Used for Santacoder override of config
|
||||
num_kv_heads=None,
|
||||
num_kv_heads: Optional[int] = None,
|
||||
# Deepseek V2 uses different QK and V dims.
|
||||
head_size: Optional[int] = None,
|
||||
skip_special_tokens: bool = True,
|
||||
):
|
||||
self.process_group, rank, world_size = initialize_torch_distributed()
|
||||
|
@ -922,7 +924,11 @@ class FlashCausalLM(Model):
|
|||
else num_kv_heads
|
||||
)
|
||||
assert self.num_kv_heads > 0
|
||||
self.head_size = config.hidden_size // config.num_attention_heads
|
||||
|
||||
if head_size is None:
|
||||
self.head_size = config.hidden_size // config.num_attention_heads
|
||||
else:
|
||||
self.head_size = head_size
|
||||
|
||||
self.cuda_graphs = {}
|
||||
self.kv_cache = []
|
||||
|
|
|
@ -21,6 +21,13 @@ class WeightsLoader(ABC):
|
|||
with the format, etc.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get_weights(self, weights: "Weights", prefix: str):
|
||||
"""
|
||||
Get weights at the given prefix and apply without tensor paralllism.
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
|
@ -104,6 +111,9 @@ class DefaultWeightsLoader(WeightsLoader):
|
|||
and/or concatenation.
|
||||
"""
|
||||
|
||||
def get_weights(self, weights: "Weights", prefix: str):
|
||||
return weights.get_tensor(f"{prefix}.weight")
|
||||
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
weights: "Weights",
|
||||
|
@ -299,6 +309,9 @@ class Weights:
|
|||
|
||||
return tensor
|
||||
|
||||
def get_weights(self, prefix: str):
|
||||
return self.weights_loader.get_weights(self, prefix)
|
||||
|
||||
def get_weights_col_packed_qkv(
|
||||
self,
|
||||
prefix: str,
|
||||
|
|
Loading…
Reference in New Issue