feat: add snapshot testing (#282)

This commit is contained in:
OlivierDehaene 2023-05-15 23:36:30 +02:00 committed by GitHub
parent f58f0a0364
commit e71471bec9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
35 changed files with 4313 additions and 509 deletions

View File

@ -20,10 +20,6 @@ on:
branches: branches:
- 'main' - 'main'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs: jobs:
start-runner: start-runner:
name: Start self-hosted EC2 runner name: Start self-hosted EC2 runner
@ -61,6 +57,9 @@ jobs:
] ]
build-and-push-image: build-and-push-image:
concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
needs: start-runner # required to start the main job when the runner is ready needs: start-runner # required to start the main job when the runner is ready
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
permissions: permissions:
@ -108,7 +107,19 @@ jobs:
username: ${{ secrets.AZURE_DOCKER_USERNAME }} username: ${{ secrets.AZURE_DOCKER_USERNAME }}
password: ${{ secrets.AZURE_DOCKER_PASSWORD }} password: ${{ secrets.AZURE_DOCKER_PASSWORD }}
registry: db4c2190dd824d1f950f5d1555fbadf0.azurecr.io registry: db4c2190dd824d1f950f5d1555fbadf0.azurecr.io
# If pull request
- name: Extract metadata (tags, labels) for Docker - name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name == 'pull_request' }}
id: meta-pr
uses: docker/metadata-action@v4.3.0
with:
images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
tags: |
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}
# If main, release or tag
- name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name != 'pull_request' }}
id: meta id: meta
uses: docker/metadata-action@v4.3.0 uses: docker/metadata-action@v4.3.0
with: with:
@ -129,13 +140,13 @@ jobs:
with: with:
context: . context: .
file: Dockerfile file: Dockerfile
push: ${{ github.event_name != 'pull_request' }} push: true
platforms: 'linux/amd64' platforms: 'linux/amd64'
build-args: | build-args: |
GIT_SHA=${{ env.GITHUB_SHA }} GIT_SHA=${{ env.GITHUB_SHA }}
DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }} DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }}
tags: ${{ steps.meta.outputs.tags }} tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }} labels: ${{ steps.meta.outputs.labels || steps.meta-pr.outputs.labels }}
cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache,mode=max cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache,mode=max
cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache,mode=max cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache,mode=max
# Sign the resulting Docker image digest except on PRs. # Sign the resulting Docker image digest except on PRs.
@ -172,11 +183,48 @@ jobs:
with: with:
sarif_file: 'trivy-results.sarif' sarif_file: 'trivy-results.sarif'
integration-tests:
concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
needs:
- start-runner
- build-and-push-image # Wait for the docker image to be built
runs-on: ${{ needs.start-runner.outputs.label }} # run the job on the newly created runner
env:
DOCKER_VOLUME: /cache
steps:
- uses: actions/checkout@v2
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v4.4.1
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Tailscale
uses: tailscale/github-action@7bd8039bf25c23c4ab1b8d6e2cc2da2280601966
with:
authkey: ${{ secrets.TAILSCALE_AUTHKEY }}
- name: Prepare disks
run: |
sudo mkfs -t ext4 /dev/nvme1n1
sudo mkdir ${{ env.DOCKER_VOLUME }}
sudo mount /dev/nvme1n1 ${{ env.DOCKER_VOLUME }}
- name: Install
run: |
make install-integration-tests
- name: Run tests
run: |
export DOCKER_IMAGE=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ env.GITHUB_SHA_SHORT }}
export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }}
pytest -s -vv integration-tests
stop-runner: stop-runner:
name: Stop self-hosted EC2 runner name: Stop self-hosted EC2 runner
needs: needs:
- start-runner - start-runner
- build-and-push-image - build-and-push-image
- integration-tests
runs-on: ubuntu-latest runs-on: ubuntu-latest
env: env:
AWS_REGION: us-east-1 AWS_REGION: us-east-1

View File

@ -1,6 +1,9 @@
install-server: install-server:
cd server && make install cd server && make install
install-integration-tests:
cd integration-tests && pip install -r requirements.txt
install-router: install-router:
cd router && cargo install --path . cd router && cargo install --path .
@ -18,9 +21,15 @@ server-dev:
router-dev: router-dev:
cd router && cargo run -- --port 8080 cd router && cargo run -- --port 8080
integration-tests: install-router install-launcher rust-tests: install-router install-launcher
cargo test cargo test
integration-tests: install-integration-tests
pytest -s -vv -m "not private" integration-tests
update-integration-tests: install-integration-tests
pytest -s -vv --snapshot-update integration-tests
python-server-tests: python-server-tests:
HF_HUB_ENABLE_HF_TRANSFER=1 pytest server/tests HF_HUB_ENABLE_HF_TRANSFER=1 pytest server/tests

View File

@ -253,5 +253,7 @@ make python-client-tests
# or both server and client tests # or both server and client tests
make python-tests make python-tests
# rust cargo tests # rust cargo tests
make rust-tests
# integration tests
make integration-tests make integration-tests
``` ```

View File

@ -0,0 +1,146 @@
import subprocess
import contextlib
import pytest
import asyncio
import os
import docker
from docker.errors import NotFound
from typing import Optional, List
from syrupy.filters import props
from text_generation import AsyncClient
from text_generation.types import Response
DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None)
HUGGING_FACE_HUB_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN", None)
DOCKER_VOLUME = os.getenv("DOCKER_VOLUME", "/data")
@pytest.fixture
def snapshot_test(snapshot):
return lambda value: value == snapshot(exclude=props("logprob"))
@pytest.fixture(scope="module")
def event_loop():
loop = asyncio.get_event_loop()
yield loop
loop.close()
@pytest.fixture(scope="module")
def launcher(event_loop):
@contextlib.contextmanager
def local_launcher(
model_id: str, num_shard: Optional[int] = None, quantize: Optional[str] = None
):
port = 9999
master_port = 19999
shard_uds_path = f"/tmp/{model_id.replace('/', '--')}-server"
args = [
"text-generation-launcher",
"--model-id",
model_id,
"--port",
str(port),
"--master-port",
str(master_port),
"--shard-uds-path",
shard_uds_path,
]
if num_shard is not None:
args.extend(["--num-shard", str(num_shard)])
if quantize:
args.append("--quantize")
with subprocess.Popen(
args, stdout=subprocess.PIPE, stderr=subprocess.PIPE
) as process:
yield AsyncClient(f"http://localhost:{port}")
process.terminate()
process.wait(60)
launcher_output = process.stdout.read().decode("utf-8")
print(launcher_output)
process.stdout.close()
process.stderr.close()
@contextlib.contextmanager
def docker_launcher(
model_id: str, num_shard: Optional[int] = None, quantize: Optional[str] = None
):
port = 9999
args = ["--model-id", model_id, "--env"]
if num_shard is not None:
args.extend(["--num-shard", str(num_shard)])
if quantize:
args.append("--quantize")
client = docker.from_env()
container_name = f"tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}"
try:
container = client.containers.get(container_name)
container.stop()
container.wait()
except NotFound:
pass
gpu_count = num_shard if num_shard is not None else 1
env = {}
if HUGGING_FACE_HUB_TOKEN is not None:
env["HUGGING_FACE_HUB_TOKEN"] = HUGGING_FACE_HUB_TOKEN
volumes = []
if DOCKER_VOLUME:
volumes = [f"{DOCKER_VOLUME}:/data"]
container = client.containers.run(
DOCKER_IMAGE,
command=args,
name=container_name,
environment=env,
auto_remove=True,
detach=True,
device_requests=[
docker.types.DeviceRequest(count=gpu_count, capabilities=[["gpu"]])
],
volumes=volumes,
ports={"80/tcp": port},
)
yield AsyncClient(f"http://localhost:{port}")
container.stop()
container_output = container.logs().decode("utf-8")
print(container_output)
if DOCKER_IMAGE is not None:
return docker_launcher
return local_launcher
@pytest.fixture(scope="module")
def generate_load():
async def generate_load_inner(
client: AsyncClient, prompt: str, max_new_tokens: int, n: int
) -> List[Response]:
futures = [
client.generate(prompt, max_new_tokens=max_new_tokens) for _ in range(n)
]
results = await asyncio.gather(*futures)
return [r.dict() for r in results]
return generate_load_inner

View File

@ -0,0 +1,627 @@
# serializer version: 1
# name: test_bloom_560m
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 17934,
'text': 'Pour',
}),
dict({
'id': 49833,
'text': ' dég',
}),
dict({
'id': 21543,
'text': 'uster',
}),
dict({
'id': 447,
'text': ' un',
}),
dict({
'id': 46341,
'text': ' ort',
}),
dict({
'id': 35567,
'text': 'olan',
}),
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': 0,
'tokens': list([
dict({
'id': 578,
'special': False,
'text': ' le',
}),
dict({
'id': 5608,
'special': False,
'text': ' faire',
}),
dict({
'id': 159570,
'special': False,
'text': ' réch',
}),
dict({
'id': 810,
'special': False,
'text': 'au',
}),
dict({
'id': 12736,
'special': False,
'text': 'ffer',
}),
dict({
'id': 1742,
'special': False,
'text': ' au',
}),
dict({
'id': 6105,
'special': False,
'text': ' bain',
}),
dict({
'id': 88254,
'special': False,
'text': '-mar',
}),
dict({
'id': 641,
'special': False,
'text': 'ie',
}),
dict({
'id': 2940,
'special': False,
'text': ' avec',
}),
]),
}),
'generated_text': ' le faire réchauffer au bain-marie avec',
})
# ---
# name: test_bloom_560m_all_params
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': 0,
'tokens': list([
dict({
'id': 408,
'special': False,
'text': ' que',
}),
dict({
'id': 20288,
'special': False,
'text': " l'on",
}),
dict({
'id': 22255,
'special': False,
'text': ' trouve',
}),
dict({
'id': 1622,
'special': False,
'text': ' une',
}),
dict({
'id': 187079,
'special': False,
'text': ' posture',
}),
dict({
'id': 501,
'special': False,
'text': ' par',
}),
dict({
'id': 8741,
'special': False,
'text': ' rapport',
}),
dict({
'id': 693,
'special': False,
'text': ' à',
}),
dict({
'id': 366,
'special': False,
'text': ' la',
}),
dict({
'id': 36503,
'special': False,
'text': ' pratique',
}),
]),
}),
'generated_text': "Pour déguster un ortolan, il faut tout d'abord que l'on trouve une posture par rapport à la pratique",
})
# ---
# name: test_bloom_560m_load
list([
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 17934,
'text': 'Pour',
}),
dict({
'id': 49833,
'text': ' dég',
}),
dict({
'id': 21543,
'text': 'uster',
}),
dict({
'id': 447,
'text': ' un',
}),
dict({
'id': 46341,
'text': ' ort',
}),
dict({
'id': 35567,
'text': 'olan',
}),
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 578,
'special': False,
'text': ' le',
}),
dict({
'id': 5608,
'special': False,
'text': ' faire',
}),
dict({
'id': 1767,
'special': False,
'text': ' cu',
}),
dict({
'id': 1273,
'special': False,
'text': 'ire',
}),
dict({
'id': 1486,
'special': False,
'text': ' dans',
}),
dict({
'id': 283,
'special': False,
'text': ' de',
}),
dict({
'id': 40410,
'special': False,
'text': " l'eau",
}),
dict({
'id': 20226,
'special': False,
'text': ' bou',
}),
dict({
'id': 172483,
'special': False,
'text': 'illante',
}),
dict({
'id': 2805,
'special': False,
'text': ' sal',
}),
]),
}),
'generated_text': " le faire cuire dans de l'eau bouillante sal",
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 17934,
'text': 'Pour',
}),
dict({
'id': 49833,
'text': ' dég',
}),
dict({
'id': 21543,
'text': 'uster',
}),
dict({
'id': 447,
'text': ' un',
}),
dict({
'id': 46341,
'text': ' ort',
}),
dict({
'id': 35567,
'text': 'olan',
}),
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 578,
'special': False,
'text': ' le',
}),
dict({
'id': 5608,
'special': False,
'text': ' faire',
}),
dict({
'id': 1767,
'special': False,
'text': ' cu',
}),
dict({
'id': 1273,
'special': False,
'text': 'ire',
}),
dict({
'id': 1486,
'special': False,
'text': ' dans',
}),
dict({
'id': 283,
'special': False,
'text': ' de',
}),
dict({
'id': 40410,
'special': False,
'text': " l'eau",
}),
dict({
'id': 20226,
'special': False,
'text': ' bou',
}),
dict({
'id': 172483,
'special': False,
'text': 'illante',
}),
dict({
'id': 2805,
'special': False,
'text': ' sal',
}),
]),
}),
'generated_text': " le faire cuire dans de l'eau bouillante sal",
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 17934,
'text': 'Pour',
}),
dict({
'id': 49833,
'text': ' dég',
}),
dict({
'id': 21543,
'text': 'uster',
}),
dict({
'id': 447,
'text': ' un',
}),
dict({
'id': 46341,
'text': ' ort',
}),
dict({
'id': 35567,
'text': 'olan',
}),
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 578,
'special': False,
'text': ' le',
}),
dict({
'id': 5608,
'special': False,
'text': ' faire',
}),
dict({
'id': 1767,
'special': False,
'text': ' cu',
}),
dict({
'id': 1273,
'special': False,
'text': 'ire',
}),
dict({
'id': 1486,
'special': False,
'text': ' dans',
}),
dict({
'id': 283,
'special': False,
'text': ' de',
}),
dict({
'id': 40410,
'special': False,
'text': " l'eau",
}),
dict({
'id': 20226,
'special': False,
'text': ' bou',
}),
dict({
'id': 172483,
'special': False,
'text': 'illante',
}),
dict({
'id': 2805,
'special': False,
'text': ' sal',
}),
]),
}),
'generated_text': " le faire cuire dans de l'eau bouillante sal",
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 17934,
'text': 'Pour',
}),
dict({
'id': 49833,
'text': ' dég',
}),
dict({
'id': 21543,
'text': 'uster',
}),
dict({
'id': 447,
'text': ' un',
}),
dict({
'id': 46341,
'text': ' ort',
}),
dict({
'id': 35567,
'text': 'olan',
}),
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 578,
'special': False,
'text': ' le',
}),
dict({
'id': 5608,
'special': False,
'text': ' faire',
}),
dict({
'id': 1767,
'special': False,
'text': ' cu',
}),
dict({
'id': 1273,
'special': False,
'text': 'ire',
}),
dict({
'id': 1486,
'special': False,
'text': ' dans',
}),
dict({
'id': 283,
'special': False,
'text': ' de',
}),
dict({
'id': 40410,
'special': False,
'text': " l'eau",
}),
dict({
'id': 20226,
'special': False,
'text': ' bou',
}),
dict({
'id': 172483,
'special': False,
'text': 'illante',
}),
dict({
'id': 2805,
'special': False,
'text': ' sal',
}),
]),
}),
'generated_text': " le faire cuire dans de l'eau bouillante sal",
}),
])
# ---

View File

@ -0,0 +1,542 @@
# serializer version: 1
# name: test_bloom_560m_sharded
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 17934,
'text': 'Pour',
}),
dict({
'id': 49833,
'text': ' dég',
}),
dict({
'id': 21543,
'text': 'uster',
}),
dict({
'id': 447,
'text': ' un',
}),
dict({
'id': 46341,
'text': ' ort',
}),
dict({
'id': 35567,
'text': 'olan',
}),
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': 0,
'tokens': list([
dict({
'id': 578,
'special': False,
'text': ' le',
}),
dict({
'id': 5608,
'special': False,
'text': ' faire',
}),
dict({
'id': 159570,
'special': False,
'text': ' réch',
}),
dict({
'id': 810,
'special': False,
'text': 'au',
}),
dict({
'id': 12736,
'special': False,
'text': 'ffer',
}),
dict({
'id': 1742,
'special': False,
'text': ' au',
}),
dict({
'id': 6105,
'special': False,
'text': ' bain',
}),
dict({
'id': 88254,
'special': False,
'text': '-mar',
}),
dict({
'id': 641,
'special': False,
'text': 'ie',
}),
dict({
'id': 2940,
'special': False,
'text': ' avec',
}),
]),
}),
'generated_text': ' le faire réchauffer au bain-marie avec',
})
# ---
# name: test_bloom_560m_sharded_load
list([
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 17934,
'text': 'Pour',
}),
dict({
'id': 49833,
'text': ' dég',
}),
dict({
'id': 21543,
'text': 'uster',
}),
dict({
'id': 447,
'text': ' un',
}),
dict({
'id': 46341,
'text': ' ort',
}),
dict({
'id': 35567,
'text': 'olan',
}),
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 578,
'special': False,
'text': ' le',
}),
dict({
'id': 5608,
'special': False,
'text': ' faire',
}),
dict({
'id': 1767,
'special': False,
'text': ' cu',
}),
dict({
'id': 1273,
'special': False,
'text': 'ire',
}),
dict({
'id': 1486,
'special': False,
'text': ' dans',
}),
dict({
'id': 283,
'special': False,
'text': ' de',
}),
dict({
'id': 40410,
'special': False,
'text': " l'eau",
}),
dict({
'id': 20226,
'special': False,
'text': ' bou',
}),
dict({
'id': 172483,
'special': False,
'text': 'illante',
}),
dict({
'id': 2805,
'special': False,
'text': ' sal',
}),
]),
}),
'generated_text': " le faire cuire dans de l'eau bouillante sal",
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 17934,
'text': 'Pour',
}),
dict({
'id': 49833,
'text': ' dég',
}),
dict({
'id': 21543,
'text': 'uster',
}),
dict({
'id': 447,
'text': ' un',
}),
dict({
'id': 46341,
'text': ' ort',
}),
dict({
'id': 35567,
'text': 'olan',
}),
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 578,
'special': False,
'text': ' le',
}),
dict({
'id': 5608,
'special': False,
'text': ' faire',
}),
dict({
'id': 1767,
'special': False,
'text': ' cu',
}),
dict({
'id': 1273,
'special': False,
'text': 'ire',
}),
dict({
'id': 1486,
'special': False,
'text': ' dans',
}),
dict({
'id': 283,
'special': False,
'text': ' de',
}),
dict({
'id': 40410,
'special': False,
'text': " l'eau",
}),
dict({
'id': 20226,
'special': False,
'text': ' bou',
}),
dict({
'id': 172483,
'special': False,
'text': 'illante',
}),
dict({
'id': 2805,
'special': False,
'text': ' sal',
}),
]),
}),
'generated_text': " le faire cuire dans de l'eau bouillante sal",
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 17934,
'text': 'Pour',
}),
dict({
'id': 49833,
'text': ' dég',
}),
dict({
'id': 21543,
'text': 'uster',
}),
dict({
'id': 447,
'text': ' un',
}),
dict({
'id': 46341,
'text': ' ort',
}),
dict({
'id': 35567,
'text': 'olan',
}),
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 578,
'special': False,
'text': ' le',
}),
dict({
'id': 5608,
'special': False,
'text': ' faire',
}),
dict({
'id': 1767,
'special': False,
'text': ' cu',
}),
dict({
'id': 1273,
'special': False,
'text': 'ire',
}),
dict({
'id': 1486,
'special': False,
'text': ' dans',
}),
dict({
'id': 283,
'special': False,
'text': ' de',
}),
dict({
'id': 40410,
'special': False,
'text': " l'eau",
}),
dict({
'id': 20226,
'special': False,
'text': ' bou',
}),
dict({
'id': 172483,
'special': False,
'text': 'illante',
}),
dict({
'id': 2805,
'special': False,
'text': ' sal',
}),
]),
}),
'generated_text': " le faire cuire dans de l'eau bouillante sal",
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 17934,
'text': 'Pour',
}),
dict({
'id': 49833,
'text': ' dég',
}),
dict({
'id': 21543,
'text': 'uster',
}),
dict({
'id': 447,
'text': ' un',
}),
dict({
'id': 46341,
'text': ' ort',
}),
dict({
'id': 35567,
'text': 'olan',
}),
dict({
'id': 15,
'text': ',',
}),
dict({
'id': 1669,
'text': ' il',
}),
dict({
'id': 11580,
'text': ' faut',
}),
dict({
'id': 3913,
'text': ' tout',
}),
dict({
'id': 39261,
'text': " d'abord",
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 578,
'special': False,
'text': ' le',
}),
dict({
'id': 5608,
'special': False,
'text': ' faire',
}),
dict({
'id': 1767,
'special': False,
'text': ' cu',
}),
dict({
'id': 1273,
'special': False,
'text': 'ire',
}),
dict({
'id': 1486,
'special': False,
'text': ' dans',
}),
dict({
'id': 283,
'special': False,
'text': ' de',
}),
dict({
'id': 40410,
'special': False,
'text': " l'eau",
}),
dict({
'id': 20226,
'special': False,
'text': ' bou',
}),
dict({
'id': 172483,
'special': False,
'text': 'illante',
}),
dict({
'id': 2805,
'special': False,
'text': ' sal',
}),
]),
}),
'generated_text': " le faire cuire dans de l'eau bouillante sal",
}),
])
# ---

View File

@ -0,0 +1,465 @@
# serializer version: 1
# name: test_flash_llama
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 1,
'text': '<s>',
}),
dict({
'id': 4321,
'text': 'Test',
}),
dict({
'id': 2009,
'text': 'request',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 363,
'special': False,
'text': ' for',
}),
dict({
'id': 847,
'special': False,
'text': ' /',
}),
dict({
'id': 2754,
'special': False,
'text': 'api',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 29894,
'special': False,
'text': 'v',
}),
dict({
'id': 29896,
'special': False,
'text': '1',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 16418,
'special': False,
'text': 'projects',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 29896,
'special': False,
'text': '1',
}),
]),
}),
'generated_text': 'for /api/v1/projects/1',
})
# ---
# name: test_flash_llama_all_params
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 1,
'text': '<s>',
}),
dict({
'id': 4321,
'text': 'Test',
}),
dict({
'id': 2009,
'text': 'request',
}),
]),
'seed': 0,
'tokens': list([
dict({
'id': 5229,
'special': False,
'text': ' failed',
}),
dict({
'id': 363,
'special': False,
'text': ' for',
}),
dict({
'id': 5641,
'special': False,
'text': ' IP',
}),
dict({
'id': 16428,
'special': False,
'text': ' Address',
}),
dict({
'id': 29901,
'special': False,
'text': ':',
}),
dict({
'id': 525,
'special': False,
'text': " '",
}),
dict({
'id': 8516,
'special': False,
'text': 'None',
}),
dict({
'id': 4286,
'special': False,
'text': "'.",
}),
dict({
'id': 13,
'special': False,
'text': '''
''',
}),
dict({
'id': 294,
'special': False,
'text': 'as',
}),
]),
}),
'generated_text': '''
Test requestfailed for IP Address: 'None'.
as
''',
})
# ---
# name: test_flash_llama_load
list([
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 1,
'text': '<s>',
}),
dict({
'id': 4321,
'text': 'Test',
}),
dict({
'id': 2009,
'text': 'request',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 363,
'special': False,
'text': ' for',
}),
dict({
'id': 847,
'special': False,
'text': ' /',
}),
dict({
'id': 2754,
'special': False,
'text': 'api',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 29894,
'special': False,
'text': 'v',
}),
dict({
'id': 29896,
'special': False,
'text': '1',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 16418,
'special': False,
'text': 'projects',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 29896,
'special': False,
'text': '1',
}),
]),
}),
'generated_text': 'for /api/v1/projects/1',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 1,
'text': '<s>',
}),
dict({
'id': 4321,
'text': 'Test',
}),
dict({
'id': 2009,
'text': 'request',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 363,
'special': False,
'text': ' for',
}),
dict({
'id': 847,
'special': False,
'text': ' /',
}),
dict({
'id': 2754,
'special': False,
'text': 'api',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 29894,
'special': False,
'text': 'v',
}),
dict({
'id': 29896,
'special': False,
'text': '1',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 16418,
'special': False,
'text': 'projects',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 29896,
'special': False,
'text': '1',
}),
]),
}),
'generated_text': 'for /api/v1/projects/1',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 1,
'text': '<s>',
}),
dict({
'id': 4321,
'text': 'Test',
}),
dict({
'id': 2009,
'text': 'request',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 363,
'special': False,
'text': ' for',
}),
dict({
'id': 847,
'special': False,
'text': ' /',
}),
dict({
'id': 2754,
'special': False,
'text': 'api',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 29894,
'special': False,
'text': 'v',
}),
dict({
'id': 29896,
'special': False,
'text': '1',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 16418,
'special': False,
'text': 'projects',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 29896,
'special': False,
'text': '1',
}),
]),
}),
'generated_text': 'for /api/v1/projects/1',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 1,
'text': '<s>',
}),
dict({
'id': 4321,
'text': 'Test',
}),
dict({
'id': 2009,
'text': 'request',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 363,
'special': False,
'text': ' for',
}),
dict({
'id': 847,
'special': False,
'text': ' /',
}),
dict({
'id': 2754,
'special': False,
'text': 'api',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 29894,
'special': False,
'text': 'v',
}),
dict({
'id': 29896,
'special': False,
'text': '1',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 16418,
'special': False,
'text': 'projects',
}),
dict({
'id': 29914,
'special': False,
'text': '/',
}),
dict({
'id': 29896,
'special': False,
'text': '1',
}),
]),
}),
'generated_text': 'for /api/v1/projects/1',
}),
])
# ---

View File

@ -0,0 +1,682 @@
# serializer version: 1
# name: test_flash_neox
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 50278,
'text': '<|prompter|>',
}),
dict({
'id': 1276,
'text': 'What',
}),
dict({
'id': 310,
'text': ' is',
}),
dict({
'id': 247,
'text': ' a',
}),
dict({
'id': 1167,
'text': ' mem',
}),
dict({
'id': 70,
'text': 'e',
}),
dict({
'id': 13,
'text': ',',
}),
dict({
'id': 285,
'text': ' and',
}),
dict({
'id': 752,
'text': ' what',
}),
dict({
'id': 434,
'text': "'s",
}),
dict({
'id': 253,
'text': ' the',
}),
dict({
'id': 2892,
'text': ' history',
}),
dict({
'id': 3212,
'text': ' behind',
}),
dict({
'id': 436,
'text': ' this',
}),
dict({
'id': 3159,
'text': ' word',
}),
dict({
'id': 32,
'text': '?',
}),
dict({
'id': 0,
'text': '<|endoftext|>',
}),
dict({
'id': 50281,
'text': '<|assistant|>',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 510,
'special': False,
'text': 'The',
}),
dict({
'id': 3159,
'special': False,
'text': ' word',
}),
dict({
'id': 346,
'special': False,
'text': ' "',
}),
dict({
'id': 6441,
'special': False,
'text': 'mem',
}),
dict({
'id': 70,
'special': False,
'text': 'e',
}),
dict({
'id': 3,
'special': False,
'text': '"',
}),
dict({
'id': 369,
'special': False,
'text': ' was',
}),
dict({
'id': 806,
'special': False,
'text': ' first',
}),
dict({
'id': 908,
'special': False,
'text': ' used',
}),
dict({
'id': 275,
'special': False,
'text': ' in',
}),
]),
}),
'generated_text': 'The word "meme" was first used in',
})
# ---
# name: test_flash_neox_load
list([
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 50278,
'text': '<|prompter|>',
}),
dict({
'id': 1276,
'text': 'What',
}),
dict({
'id': 310,
'text': ' is',
}),
dict({
'id': 247,
'text': ' a',
}),
dict({
'id': 1167,
'text': ' mem',
}),
dict({
'id': 70,
'text': 'e',
}),
dict({
'id': 13,
'text': ',',
}),
dict({
'id': 285,
'text': ' and',
}),
dict({
'id': 752,
'text': ' what',
}),
dict({
'id': 434,
'text': "'s",
}),
dict({
'id': 253,
'text': ' the',
}),
dict({
'id': 2892,
'text': ' history',
}),
dict({
'id': 3212,
'text': ' behind',
}),
dict({
'id': 436,
'text': ' this',
}),
dict({
'id': 3159,
'text': ' word',
}),
dict({
'id': 32,
'text': '?',
}),
dict({
'id': 0,
'text': '<|endoftext|>',
}),
dict({
'id': 50281,
'text': '<|assistant|>',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 510,
'special': False,
'text': 'The',
}),
dict({
'id': 3159,
'special': False,
'text': ' word',
}),
dict({
'id': 346,
'special': False,
'text': ' "',
}),
dict({
'id': 6441,
'special': False,
'text': 'mem',
}),
dict({
'id': 70,
'special': False,
'text': 'e',
}),
dict({
'id': 3,
'special': False,
'text': '"',
}),
dict({
'id': 369,
'special': False,
'text': ' was',
}),
dict({
'id': 806,
'special': False,
'text': ' first',
}),
dict({
'id': 908,
'special': False,
'text': ' used',
}),
dict({
'id': 275,
'special': False,
'text': ' in',
}),
]),
}),
'generated_text': 'The word "meme" was first used in',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 50278,
'text': '<|prompter|>',
}),
dict({
'id': 1276,
'text': 'What',
}),
dict({
'id': 310,
'text': ' is',
}),
dict({
'id': 247,
'text': ' a',
}),
dict({
'id': 1167,
'text': ' mem',
}),
dict({
'id': 70,
'text': 'e',
}),
dict({
'id': 13,
'text': ',',
}),
dict({
'id': 285,
'text': ' and',
}),
dict({
'id': 752,
'text': ' what',
}),
dict({
'id': 434,
'text': "'s",
}),
dict({
'id': 253,
'text': ' the',
}),
dict({
'id': 2892,
'text': ' history',
}),
dict({
'id': 3212,
'text': ' behind',
}),
dict({
'id': 436,
'text': ' this',
}),
dict({
'id': 3159,
'text': ' word',
}),
dict({
'id': 32,
'text': '?',
}),
dict({
'id': 0,
'text': '<|endoftext|>',
}),
dict({
'id': 50281,
'text': '<|assistant|>',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 510,
'special': False,
'text': 'The',
}),
dict({
'id': 3159,
'special': False,
'text': ' word',
}),
dict({
'id': 346,
'special': False,
'text': ' "',
}),
dict({
'id': 6441,
'special': False,
'text': 'mem',
}),
dict({
'id': 70,
'special': False,
'text': 'e',
}),
dict({
'id': 3,
'special': False,
'text': '"',
}),
dict({
'id': 369,
'special': False,
'text': ' was',
}),
dict({
'id': 806,
'special': False,
'text': ' first',
}),
dict({
'id': 908,
'special': False,
'text': ' used',
}),
dict({
'id': 275,
'special': False,
'text': ' in',
}),
]),
}),
'generated_text': 'The word "meme" was first used in',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 50278,
'text': '<|prompter|>',
}),
dict({
'id': 1276,
'text': 'What',
}),
dict({
'id': 310,
'text': ' is',
}),
dict({
'id': 247,
'text': ' a',
}),
dict({
'id': 1167,
'text': ' mem',
}),
dict({
'id': 70,
'text': 'e',
}),
dict({
'id': 13,
'text': ',',
}),
dict({
'id': 285,
'text': ' and',
}),
dict({
'id': 752,
'text': ' what',
}),
dict({
'id': 434,
'text': "'s",
}),
dict({
'id': 253,
'text': ' the',
}),
dict({
'id': 2892,
'text': ' history',
}),
dict({
'id': 3212,
'text': ' behind',
}),
dict({
'id': 436,
'text': ' this',
}),
dict({
'id': 3159,
'text': ' word',
}),
dict({
'id': 32,
'text': '?',
}),
dict({
'id': 0,
'text': '<|endoftext|>',
}),
dict({
'id': 50281,
'text': '<|assistant|>',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 510,
'special': False,
'text': 'The',
}),
dict({
'id': 3159,
'special': False,
'text': ' word',
}),
dict({
'id': 346,
'special': False,
'text': ' "',
}),
dict({
'id': 6441,
'special': False,
'text': 'mem',
}),
dict({
'id': 70,
'special': False,
'text': 'e',
}),
dict({
'id': 3,
'special': False,
'text': '"',
}),
dict({
'id': 369,
'special': False,
'text': ' was',
}),
dict({
'id': 806,
'special': False,
'text': ' first',
}),
dict({
'id': 908,
'special': False,
'text': ' used',
}),
dict({
'id': 275,
'special': False,
'text': ' in',
}),
]),
}),
'generated_text': 'The word "meme" was first used in',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 50278,
'text': '<|prompter|>',
}),
dict({
'id': 1276,
'text': 'What',
}),
dict({
'id': 310,
'text': ' is',
}),
dict({
'id': 247,
'text': ' a',
}),
dict({
'id': 1167,
'text': ' mem',
}),
dict({
'id': 70,
'text': 'e',
}),
dict({
'id': 13,
'text': ',',
}),
dict({
'id': 285,
'text': ' and',
}),
dict({
'id': 752,
'text': ' what',
}),
dict({
'id': 434,
'text': "'s",
}),
dict({
'id': 253,
'text': ' the',
}),
dict({
'id': 2892,
'text': ' history',
}),
dict({
'id': 3212,
'text': ' behind',
}),
dict({
'id': 436,
'text': ' this',
}),
dict({
'id': 3159,
'text': ' word',
}),
dict({
'id': 32,
'text': '?',
}),
dict({
'id': 0,
'text': '<|endoftext|>',
}),
dict({
'id': 50281,
'text': '<|assistant|>',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 510,
'special': False,
'text': 'The',
}),
dict({
'id': 3159,
'special': False,
'text': ' word',
}),
dict({
'id': 346,
'special': False,
'text': ' "',
}),
dict({
'id': 6441,
'special': False,
'text': 'mem',
}),
dict({
'id': 70,
'special': False,
'text': 'e',
}),
dict({
'id': 3,
'special': False,
'text': '"',
}),
dict({
'id': 369,
'special': False,
'text': ' was',
}),
dict({
'id': 806,
'special': False,
'text': ' first',
}),
dict({
'id': 908,
'special': False,
'text': ' used',
}),
dict({
'id': 275,
'special': False,
'text': ' in',
}),
]),
}),
'generated_text': 'The word "meme" was first used in',
}),
])
# ---

View File

@ -0,0 +1,472 @@
# serializer version: 1
# name: test_flash_santacoder
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 563,
'text': 'def',
}),
dict({
'id': 942,
'text': ' print',
}),
dict({
'id': 62,
'text': '_',
}),
dict({
'id': 7196,
'text': 'hello',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 1241,
'special': False,
'text': '():',
}),
dict({
'id': 258,
'special': False,
'text': '''
''',
}),
dict({
'id': 942,
'special': False,
'text': ' print',
}),
dict({
'id': 372,
'special': False,
'text': '("',
}),
dict({
'id': 7371,
'special': False,
'text': 'Hello',
}),
dict({
'id': 9956,
'special': False,
'text': ' World',
}),
dict({
'id': 8657,
'special': False,
'text': '!")',
}),
dict({
'id': 185,
'special': False,
'text': '''
''',
}),
dict({
'id': 185,
'special': False,
'text': '''
''',
}),
dict({
'id': 1018,
'special': False,
'text': 'print',
}),
]),
}),
'generated_text': '''
():
print("Hello World!")
print
''',
})
# ---
# name: test_flash_santacoder_load
list([
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 563,
'text': 'def',
}),
dict({
'id': 942,
'text': ' print',
}),
dict({
'id': 62,
'text': '_',
}),
dict({
'id': 7196,
'text': 'hello',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 1241,
'special': False,
'text': '():',
}),
dict({
'id': 258,
'special': False,
'text': '''
''',
}),
dict({
'id': 942,
'special': False,
'text': ' print',
}),
dict({
'id': 372,
'special': False,
'text': '("',
}),
dict({
'id': 7371,
'special': False,
'text': 'Hello',
}),
dict({
'id': 9956,
'special': False,
'text': ' World',
}),
dict({
'id': 8657,
'special': False,
'text': '!")',
}),
dict({
'id': 185,
'special': False,
'text': '''
''',
}),
dict({
'id': 185,
'special': False,
'text': '''
''',
}),
dict({
'id': 1018,
'special': False,
'text': 'print',
}),
]),
}),
'generated_text': '''
():
print("Hello World!")
print
''',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 563,
'text': 'def',
}),
dict({
'id': 942,
'text': ' print',
}),
dict({
'id': 62,
'text': '_',
}),
dict({
'id': 7196,
'text': 'hello',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 1241,
'special': False,
'text': '():',
}),
dict({
'id': 258,
'special': False,
'text': '''
''',
}),
dict({
'id': 942,
'special': False,
'text': ' print',
}),
dict({
'id': 372,
'special': False,
'text': '("',
}),
dict({
'id': 7371,
'special': False,
'text': 'Hello',
}),
dict({
'id': 9956,
'special': False,
'text': ' World',
}),
dict({
'id': 8657,
'special': False,
'text': '!")',
}),
dict({
'id': 185,
'special': False,
'text': '''
''',
}),
dict({
'id': 185,
'special': False,
'text': '''
''',
}),
dict({
'id': 1018,
'special': False,
'text': 'print',
}),
]),
}),
'generated_text': '''
():
print("Hello World!")
print
''',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 563,
'text': 'def',
}),
dict({
'id': 942,
'text': ' print',
}),
dict({
'id': 62,
'text': '_',
}),
dict({
'id': 7196,
'text': 'hello',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 1241,
'special': False,
'text': '():',
}),
dict({
'id': 258,
'special': False,
'text': '''
''',
}),
dict({
'id': 942,
'special': False,
'text': ' print',
}),
dict({
'id': 372,
'special': False,
'text': '("',
}),
dict({
'id': 7371,
'special': False,
'text': 'Hello',
}),
dict({
'id': 9956,
'special': False,
'text': ' World',
}),
dict({
'id': 8657,
'special': False,
'text': '!")',
}),
dict({
'id': 185,
'special': False,
'text': '''
''',
}),
dict({
'id': 185,
'special': False,
'text': '''
''',
}),
dict({
'id': 1018,
'special': False,
'text': 'print',
}),
]),
}),
'generated_text': '''
():
print("Hello World!")
print
''',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 563,
'text': 'def',
}),
dict({
'id': 942,
'text': ' print',
}),
dict({
'id': 62,
'text': '_',
}),
dict({
'id': 7196,
'text': 'hello',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 1241,
'special': False,
'text': '():',
}),
dict({
'id': 258,
'special': False,
'text': '''
''',
}),
dict({
'id': 942,
'special': False,
'text': ' print',
}),
dict({
'id': 372,
'special': False,
'text': '("',
}),
dict({
'id': 7371,
'special': False,
'text': 'Hello',
}),
dict({
'id': 9956,
'special': False,
'text': ' World',
}),
dict({
'id': 8657,
'special': False,
'text': '!")',
}),
dict({
'id': 185,
'special': False,
'text': '''
''',
}),
dict({
'id': 185,
'special': False,
'text': '''
''',
}),
dict({
'id': 1018,
'special': False,
'text': 'print',
}),
]),
}),
'generated_text': '''
():
print("Hello World!")
print
''',
}),
])
# ---

View File

@ -0,0 +1,573 @@
# serializer version: 1
# name: test_flash_starcoder
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 589,
'text': 'def',
}),
dict({
'id': 1459,
'text': ' print',
}),
dict({
'id': 81,
'text': '_',
}),
dict({
'id': 7656,
'text': 'hello',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 2262,
'special': False,
'text': '():',
}),
dict({
'id': 284,
'special': False,
'text': '''
''',
}),
dict({
'id': 1459,
'special': False,
'text': ' print',
}),
dict({
'id': 440,
'special': False,
'text': '("',
}),
dict({
'id': 8279,
'special': False,
'text': 'Hello',
}),
dict({
'id': 10896,
'special': False,
'text': ' World',
}),
dict({
'id': 657,
'special': False,
'text': '")',
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 589,
'special': False,
'text': 'def',
}),
]),
}),
'generated_text': '''
():
print("Hello World")
def
''',
})
# ---
# name: test_flash_starcoder_default_params
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.EndOfSequenceToken: 'eos_token'>,
'generated_tokens': 12,
'prefill': list([
dict({
'id': 589,
'text': 'def',
}),
dict({
'id': 1459,
'text': ' print',
}),
dict({
'id': 81,
'text': '_',
}),
dict({
'id': 7656,
'text': 'hello',
}),
]),
'seed': 0,
'tokens': list([
dict({
'id': 2262,
'special': False,
'text': '():',
}),
dict({
'id': 284,
'special': False,
'text': '''
''',
}),
dict({
'id': 5741,
'special': False,
'text': ' logging',
}),
dict({
'id': 32,
'special': False,
'text': '.',
}),
dict({
'id': 1338,
'special': False,
'text': 'info',
}),
dict({
'id': 463,
'special': False,
'text': "('",
}),
dict({
'id': 8279,
'special': False,
'text': 'Hello',
}),
dict({
'id': 30,
'special': False,
'text': ',',
}),
dict({
'id': 10896,
'special': False,
'text': ' World',
}),
dict({
'id': 683,
'special': False,
'text': "')",
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 0,
'special': True,
'text': '<|endoftext|>',
}),
]),
}),
'generated_text': '''
():
logging.info('Hello, World')
<|endoftext|>
''',
})
# ---
# name: test_flash_starcoder_load
list([
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 589,
'text': 'def',
}),
dict({
'id': 1459,
'text': ' print',
}),
dict({
'id': 81,
'text': '_',
}),
dict({
'id': 7656,
'text': 'hello',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 2262,
'special': False,
'text': '():',
}),
dict({
'id': 284,
'special': False,
'text': '''
''',
}),
dict({
'id': 1459,
'special': False,
'text': ' print',
}),
dict({
'id': 440,
'special': False,
'text': '("',
}),
dict({
'id': 8279,
'special': False,
'text': 'Hello',
}),
dict({
'id': 10896,
'special': False,
'text': ' World',
}),
dict({
'id': 657,
'special': False,
'text': '")',
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 589,
'special': False,
'text': 'def',
}),
]),
}),
'generated_text': '''
():
print("Hello World")
def
''',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 589,
'text': 'def',
}),
dict({
'id': 1459,
'text': ' print',
}),
dict({
'id': 81,
'text': '_',
}),
dict({
'id': 7656,
'text': 'hello',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 2262,
'special': False,
'text': '():',
}),
dict({
'id': 284,
'special': False,
'text': '''
''',
}),
dict({
'id': 1459,
'special': False,
'text': ' print',
}),
dict({
'id': 440,
'special': False,
'text': '("',
}),
dict({
'id': 8279,
'special': False,
'text': 'Hello',
}),
dict({
'id': 10896,
'special': False,
'text': ' World',
}),
dict({
'id': 657,
'special': False,
'text': '")',
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 589,
'special': False,
'text': 'def',
}),
]),
}),
'generated_text': '''
():
print("Hello World")
def
''',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 589,
'text': 'def',
}),
dict({
'id': 1459,
'text': ' print',
}),
dict({
'id': 81,
'text': '_',
}),
dict({
'id': 7656,
'text': 'hello',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 2262,
'special': False,
'text': '():',
}),
dict({
'id': 284,
'special': False,
'text': '''
''',
}),
dict({
'id': 1459,
'special': False,
'text': ' print',
}),
dict({
'id': 440,
'special': False,
'text': '("',
}),
dict({
'id': 8279,
'special': False,
'text': 'Hello',
}),
dict({
'id': 10896,
'special': False,
'text': ' World',
}),
dict({
'id': 657,
'special': False,
'text': '")',
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 589,
'special': False,
'text': 'def',
}),
]),
}),
'generated_text': '''
():
print("Hello World")
def
''',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 589,
'text': 'def',
}),
dict({
'id': 1459,
'text': ' print',
}),
dict({
'id': 81,
'text': '_',
}),
dict({
'id': 7656,
'text': 'hello',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 2262,
'special': False,
'text': '():',
}),
dict({
'id': 284,
'special': False,
'text': '''
''',
}),
dict({
'id': 1459,
'special': False,
'text': ' print',
}),
dict({
'id': 440,
'special': False,
'text': '("',
}),
dict({
'id': 8279,
'special': False,
'text': 'Hello',
}),
dict({
'id': 10896,
'special': False,
'text': ' World',
}),
dict({
'id': 657,
'special': False,
'text': '")',
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 203,
'special': False,
'text': '''
''',
}),
dict({
'id': 589,
'special': False,
'text': 'def',
}),
]),
}),
'generated_text': '''
():
print("Hello World")
def
''',
}),
])
# ---

View File

@ -0,0 +1,306 @@
# serializer version: 1
# name: test_mt0_base
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.EndOfSequenceToken: 'eos_token'>,
'generated_tokens': 5,
'prefill': list([
dict({
'id': 0,
'text': '<pad>',
}),
]),
'seed': 0,
'tokens': list([
dict({
'id': 926,
'special': False,
'text': 'To',
}),
dict({
'id': 18295,
'special': False,
'text': ' sell',
}),
dict({
'id': 7868,
'special': False,
'text': ' things',
}),
dict({
'id': 260,
'special': False,
'text': '.',
}),
dict({
'id': 1,
'special': True,
'text': '</s>',
}),
]),
}),
'generated_text': 'To sell things.',
})
# ---
# name: test_mt0_base_all_params
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.Length: 'length'>,
'generated_tokens': 10,
'prefill': list([
dict({
'id': 0,
'text': '<pad>',
}),
]),
'seed': 0,
'tokens': list([
dict({
'id': 16017,
'special': False,
'text': 'blue',
}),
dict({
'id': 20495,
'special': False,
'text': ' sky',
}),
dict({
'id': 259,
'special': False,
'text': ' ',
}),
dict({
'id': 15484,
'special': False,
'text': 'appear',
}),
dict({
'id': 345,
'special': False,
'text': 'ed',
}),
dict({
'id': 288,
'special': False,
'text': ' to',
}),
dict({
'id': 35622,
'special': False,
'text': ' cloud',
}),
dict({
'id': 263,
'special': False,
'text': 's',
}),
dict({
'id': 14701,
'special': False,
'text': ' above',
}),
dict({
'id': 751,
'special': False,
'text': ' all',
}),
]),
}),
'generated_text': 'Why is the sky blue?blue sky appeared to clouds above all',
})
# ---
# name: test_mt0_base_load
list([
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.EndOfSequenceToken: 'eos_token'>,
'generated_tokens': 6,
'prefill': list([
dict({
'id': 0,
'text': '<pad>',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 259,
'special': False,
'text': '',
}),
dict({
'id': 39261,
'special': False,
'text': 'Because',
}),
dict({
'id': 609,
'special': False,
'text': ' it',
}),
dict({
'id': 339,
'special': False,
'text': ' is',
}),
dict({
'id': 16017,
'special': False,
'text': ' blue',
}),
dict({
'id': 1,
'special': True,
'text': '</s>',
}),
]),
}),
'generated_text': 'Because it is blue',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.EndOfSequenceToken: 'eos_token'>,
'generated_tokens': 6,
'prefill': list([
dict({
'id': 0,
'text': '<pad>',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 259,
'special': False,
'text': '',
}),
dict({
'id': 39261,
'special': False,
'text': 'Because',
}),
dict({
'id': 609,
'special': False,
'text': ' it',
}),
dict({
'id': 339,
'special': False,
'text': ' is',
}),
dict({
'id': 16017,
'special': False,
'text': ' blue',
}),
dict({
'id': 1,
'special': True,
'text': '</s>',
}),
]),
}),
'generated_text': 'Because it is blue',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.EndOfSequenceToken: 'eos_token'>,
'generated_tokens': 6,
'prefill': list([
dict({
'id': 0,
'text': '<pad>',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 259,
'special': False,
'text': '',
}),
dict({
'id': 39261,
'special': False,
'text': 'Because',
}),
dict({
'id': 609,
'special': False,
'text': ' it',
}),
dict({
'id': 339,
'special': False,
'text': ' is',
}),
dict({
'id': 16017,
'special': False,
'text': ' blue',
}),
dict({
'id': 1,
'special': True,
'text': '</s>',
}),
]),
}),
'generated_text': 'Because it is blue',
}),
dict({
'details': dict({
'best_of_sequences': None,
'finish_reason': <FinishReason.EndOfSequenceToken: 'eos_token'>,
'generated_tokens': 6,
'prefill': list([
dict({
'id': 0,
'text': '<pad>',
}),
]),
'seed': None,
'tokens': list([
dict({
'id': 259,
'special': False,
'text': '',
}),
dict({
'id': 39261,
'special': False,
'text': 'Because',
}),
dict({
'id': 609,
'special': False,
'text': ' it',
}),
dict({
'id': 339,
'special': False,
'text': ' is',
}),
dict({
'id': 16017,
'special': False,
'text': ' blue',
}),
dict({
'id': 1,
'special': True,
'text': '</s>',
}),
]),
}),
'generated_text': 'Because it is blue',
}),
])
# ---

View File

@ -0,0 +1,63 @@
import pytest
from utils import health_check
@pytest.fixture(scope="module")
def bloom_560(launcher):
with launcher("bigscience/bloom-560m") as client:
yield client
@pytest.mark.asyncio
async def test_bloom_560m(bloom_560, snapshot_test):
await health_check(bloom_560, 60)
response = await bloom_560.generate(
"Pour déguster un ortolan, il faut tout d'abord",
max_new_tokens=10,
top_p=0.9,
seed=0,
)
assert response.details.generated_tokens == 10
assert snapshot_test(response)
@pytest.mark.asyncio
async def test_bloom_560m_all_params(bloom_560, snapshot_test):
await health_check(bloom_560, 60)
response = await bloom_560.generate(
"Pour déguster un ortolan, il faut tout d'abord",
max_new_tokens=10,
repetition_penalty=1.2,
return_full_text=True,
stop_sequences=["test"],
temperature=0.5,
top_p=0.9,
top_k=10,
truncate=5,
typical_p=0.9,
watermark=True,
seed=0,
)
assert response.details.generated_tokens == 10
assert snapshot_test(response)
@pytest.mark.asyncio
async def test_bloom_560m_load(bloom_560, generate_load, snapshot_test):
await health_check(bloom_560, 60)
responses = await generate_load(
bloom_560,
"Pour déguster un ortolan, il faut tout d'abord",
max_new_tokens=10,
n=4,
)
assert len(responses) == 4
assert snapshot_test(responses)

View File

@ -0,0 +1,42 @@
import pytest
from utils import health_check
@pytest.fixture(scope="module")
def bloom_560m_sharded(launcher):
with launcher("bigscience/bloom-560m", num_shard=2) as client:
yield client
@pytest.mark.asyncio
async def test_bloom_560m_sharded(bloom_560m_sharded, snapshot_test):
await health_check(bloom_560m_sharded, 60)
response = await bloom_560m_sharded.generate(
"Pour déguster un ortolan, il faut tout d'abord",
max_new_tokens=10,
top_p=0.9,
seed=0,
)
assert response.details.generated_tokens == 10
assert snapshot_test(response)
@pytest.mark.asyncio
async def test_bloom_560m_sharded_load(
bloom_560m_sharded, generate_load, snapshot_test
):
await health_check(bloom_560m_sharded, 60)
responses = await generate_load(
bloom_560m_sharded,
"Pour déguster un ortolan, il faut tout d'abord",
max_new_tokens=10,
n=4,
)
assert len(responses) == 4
assert snapshot_test(responses)

View File

@ -0,0 +1,56 @@
import pytest
from utils import health_check
@pytest.fixture(scope="module")
def flash_llama(launcher):
with launcher("huggingface/llama-7b", num_shard=2) as client:
yield client
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama(flash_llama, snapshot_test):
await health_check(flash_llama, 120)
response = await flash_llama.generate("Test request", max_new_tokens=10)
assert response.details.generated_tokens == 10
assert snapshot_test(response)
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_all_params(flash_llama, snapshot_test):
await health_check(flash_llama, 120)
response = await flash_llama.generate(
"Test request",
max_new_tokens=10,
repetition_penalty=1.2,
return_full_text=True,
stop_sequences=["test"],
temperature=0.5,
top_p=0.9,
top_k=10,
truncate=5,
typical_p=0.9,
watermark=True,
seed=0,
)
assert response.details.generated_tokens == 10
assert snapshot_test(response)
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_load(flash_llama, generate_load, snapshot_test):
await health_check(flash_llama, 120)
responses = await generate_load(flash_llama, "Test request", max_new_tokens=10, n=4)
assert len(responses) == 4
assert snapshot_test(responses)

View File

@ -0,0 +1,38 @@
import pytest
from utils import health_check
@pytest.fixture(scope="module")
def flash_neox(launcher):
with launcher("OpenAssistant/oasst-sft-1-pythia-12b", num_shard=2) as client:
yield client
@pytest.mark.asyncio
async def test_flash_neox(flash_neox, snapshot_test):
await health_check(flash_neox, 240)
response = await flash_neox.generate(
"<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>",
max_new_tokens=10,
)
assert response.details.generated_tokens == 10
assert snapshot_test(response)
@pytest.mark.asyncio
async def test_flash_neox_load(flash_neox, generate_load, snapshot_test):
await health_check(flash_neox, 240)
responses = await generate_load(
flash_neox,
"<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>",
max_new_tokens=10,
n=4,
)
assert len(responses) == 4
assert snapshot_test(responses)

View File

@ -0,0 +1,32 @@
import pytest
from utils import health_check
@pytest.fixture(scope="module")
def flash_santacoder(launcher):
with launcher("bigcode/santacoder") as client:
yield client
@pytest.mark.asyncio
async def test_flash_santacoder(flash_santacoder, snapshot_test):
await health_check(flash_santacoder, 60)
response = await flash_santacoder.generate("def print_hello", max_new_tokens=10)
assert response.details.generated_tokens == 10
assert snapshot_test(response)
@pytest.mark.asyncio
async def test_flash_santacoder_load(flash_santacoder, generate_load, snapshot_test):
await health_check(flash_santacoder, 60)
responses = await generate_load(
flash_santacoder, "def print_hello", max_new_tokens=10, n=4
)
assert len(responses) == 4
assert snapshot_test(responses)

View File

@ -0,0 +1,47 @@
import pytest
from utils import health_check
@pytest.fixture(scope="module")
def flash_starcoder(launcher):
with launcher("bigcode/starcoder", num_shard=2) as client:
yield client
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_starcoder(flash_starcoder, snapshot_test):
await health_check(flash_starcoder, 240)
response = await flash_starcoder.generate("def print_hello", max_new_tokens=10)
assert response.details.generated_tokens == 10
assert snapshot_test(response)
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_starcoder_default_params(flash_starcoder, snapshot_test):
await health_check(flash_starcoder, 240)
response = await flash_starcoder.generate(
"def print_hello", max_new_tokens=60, temperature=0.2, top_p=0.95, seed=0
)
assert response.details.generated_tokens == 12
assert snapshot_test(response)
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_starcoder_load(flash_starcoder, generate_load, snapshot_test):
await health_check(flash_starcoder, 240)
responses = await generate_load(
flash_starcoder, "def print_hello", max_new_tokens=10, n=4
)
assert len(responses) == 4
assert snapshot_test(responses)

View File

@ -0,0 +1,63 @@
import pytest
from utils import health_check
@pytest.fixture(scope="module")
def mt0_base(launcher):
with launcher("bigscience/mt0-base") as client:
yield client
@pytest.mark.asyncio
async def test_mt0_base(mt0_base, snapshot_test):
await health_check(mt0_base, 60)
response = await mt0_base.generate(
"Why is the sky blue?",
max_new_tokens=10,
top_p=0.9,
seed=0,
)
assert response.details.generated_tokens == 5
assert snapshot_test(response)
@pytest.mark.asyncio
async def test_mt0_base_all_params(mt0_base, snapshot_test):
await health_check(mt0_base, 60)
response = await mt0_base.generate(
"Why is the sky blue?",
max_new_tokens=10,
repetition_penalty=1.2,
return_full_text=True,
stop_sequences=["test"],
temperature=0.5,
top_p=0.9,
top_k=10,
truncate=5,
typical_p=0.9,
watermark=True,
seed=0,
)
assert response.details.generated_tokens == 10
assert snapshot_test(response)
@pytest.mark.asyncio
async def test_mt0_base_load(mt0_base, generate_load, snapshot_test):
await health_check(mt0_base, 60)
responses = await generate_load(
mt0_base,
"Why is the sky blue?",
max_new_tokens=10,
n=4,
)
assert len(responses) == 4
assert snapshot_test(responses)

View File

@ -0,0 +1,15 @@
import time
from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError
from text_generation import AsyncClient
async def health_check(client: AsyncClient, timeout: int = 60):
assert timeout > 0
for _ in range(timeout):
try:
await client.generate("test")
return
except (ClientConnectorError, ClientOSError, ServerDisconnectedError) as e:
time.sleep(1)
raise RuntimeError("Health check failed")

View File

@ -0,0 +1,5 @@
syrupy
text-generation==0.5.1
pytest
pytest-asyncio==0.17.2
docker

View File

@ -1,142 +0,0 @@
{
"generated_text": ".get(\"action\");\n if (action == null) {\n throw new RuntimeException",
"details": {
"finish_reason": "length",
"generated_tokens": 20,
"seed": null,
"prefill": [
{
"id": 10264,
"text": "Test",
"logprob": null
},
{
"id": 8821,
"text": " request",
"logprob": -11.894989
}
],
"tokens": [
{
"id": 17,
"text": ".",
"logprob": -1.8267672,
"special": false
},
{
"id": 1587,
"text": "get",
"logprob": -2.4674969,
"special": false
},
{
"id": 11,
"text": "(",
"logprob": -1.906001,
"special": false
},
{
"id": 5,
"text": "\"",
"logprob": -1.2279545,
"special": false
},
{
"id": 4899,
"text": "action",
"logprob": -4.170299,
"special": false
},
{
"id": 5,
"text": "\"",
"logprob": -0.32478866,
"special": false
},
{
"id": 12,
"text": ")",
"logprob": -1.0773665,
"special": false
},
{
"id": 30,
"text": ";",
"logprob": -0.27640742,
"special": false
},
{
"id": 837,
"text": "\n ",
"logprob": -1.6970354,
"special": false
},
{
"id": 1320,
"text": " if",
"logprob": -1.4495516,
"special": false
},
{
"id": 375,
"text": " (",
"logprob": -0.23609057,
"special": false
},
{
"id": 4899,
"text": "action",
"logprob": -1.1916996,
"special": false
},
{
"id": 3535,
"text": " ==",
"logprob": -0.8918753,
"special": false
},
{
"id": 5109,
"text": " null",
"logprob": -0.3933342,
"special": false
},
{
"id": 12,
"text": ")",
"logprob": -0.43212673,
"special": false
},
{
"id": 731,
"text": " {",
"logprob": -0.17702064,
"special": false
},
{
"id": 1260,
"text": "\n ",
"logprob": -0.07027565,
"special": false
},
{
"id": 10519,
"text": " throw",
"logprob": -1.3915029,
"special": false
},
{
"id": 2084,
"text": " new",
"logprob": -0.04201372,
"special": false
},
{
"id": 150858,
"text": " RuntimeException",
"logprob": -1.7329919,
"special": false
}
]
}
}

View File

@ -1,172 +0,0 @@
use float_eq::assert_float_eq;
use serde::Deserialize;
use serde_json::Value;
use std::fs::File;
use std::io::{BufRead, BufReader};
use std::path::PathBuf;
use std::thread;
use std::thread::sleep;
use std::time::Duration;
use subprocess::{Popen, PopenConfig, Redirection};
#[derive(Deserialize)]
pub struct Token {
id: u32,
text: String,
logprob: Option<f32>,
special: bool,
}
#[derive(Deserialize)]
struct Details {
finish_reason: String,
generated_tokens: u32,
tokens: Vec<Token>,
}
#[derive(Deserialize)]
struct GeneratedText {
generated_text: String,
details: Details,
}
fn start_launcher(model_id: String, num_shard: usize, port: usize, master_port: usize) -> Popen {
let argv = vec![
"text-generation-launcher".to_string(),
"--model-id".to_string(),
model_id.clone(),
"--num-shard".to_string(),
num_shard.to_string(),
"--port".to_string(),
port.to_string(),
"--master-port".to_string(),
master_port.to_string(),
"--shard-uds-path".to_string(),
format!("/tmp/test-{}-{}-{}", num_shard, port, master_port),
];
let mut launcher = Popen::create(
&argv,
PopenConfig {
stdout: Redirection::Pipe,
stderr: Redirection::Merge,
..Default::default()
},
)
.expect("Could not start launcher");
// Redirect STDOUT and STDERR to the console
// (STDERR is merged into STDOUT)
let launcher_stdout = launcher.stdout.take().unwrap();
thread::spawn(move || {
let stdout = BufReader::new(launcher_stdout);
for line in stdout.lines() {
println!("{}", line.unwrap());
}
});
for _ in 0..60 {
let health = reqwest::blocking::get(format!("http://localhost:{}/health", port));
if health.is_ok() {
return launcher;
}
sleep(Duration::from_secs(2));
}
launcher.terminate().unwrap();
launcher.wait().unwrap();
panic!("failed to launch {}", model_id)
}
fn test_model(
model_id: String,
num_shard: usize,
port: usize,
master_port: usize,
) -> GeneratedText {
let mut launcher = start_launcher(model_id, num_shard, port, master_port);
let data = r#"
{
"inputs": "Test request",
"parameters": {
"details": true
}
}"#;
let req: Value = serde_json::from_str(data).unwrap();
let client = reqwest::blocking::Client::new();
let res = client
.post(format!("http://localhost:{}/generate", port))
.json(&req)
.send();
launcher.terminate().unwrap();
launcher.wait().unwrap();
let result: GeneratedText = res.unwrap().json().unwrap();
result
}
fn read_json(name: &str) -> GeneratedText {
let mut d = PathBuf::from(env!("CARGO_MANIFEST_DIR"));
d.push("tests/");
d.push(name);
let file = File::open(d).unwrap();
let reader = BufReader::new(file);
let result: GeneratedText = serde_json::from_reader(reader).unwrap();
result
}
fn compare_results(result: GeneratedText, expected: GeneratedText) {
assert_eq!(result.generated_text, expected.generated_text);
assert_eq!(result.details.finish_reason, expected.details.finish_reason);
assert_eq!(
result.details.generated_tokens,
expected.details.generated_tokens
);
for (token, expected_token) in result
.details
.tokens
.into_iter()
.zip(expected.details.tokens.into_iter())
{
assert_eq!(token.id, expected_token.id);
assert_eq!(token.text, expected_token.text);
assert_eq!(token.special, expected_token.special);
if let Some(logprob) = token.logprob {
let expected_logprob = expected_token.logprob.unwrap();
assert_float_eq!(logprob, expected_logprob, abs <= 0.001);
} else {
assert_eq!(token.logprob, expected_token.logprob);
}
}
}
#[test]
fn test_bloom_560m() {
let expected = read_json("bloom_560m.json");
let result = test_model("bigscience/bloom-560m".to_string(), 1, 3000, 29500);
compare_results(result, expected);
}
#[test]
fn test_bloom_560m_distributed() {
let expected = read_json("bloom_560m.json");
let result = test_model("bigscience/bloom-560m".to_string(), 2, 3001, 29501);
compare_results(result, expected);
}
#[test]
fn test_mt0_base() {
let expected = read_json("mt0_base.json");
let result = test_model("bigscience/mt0-base".to_string(), 1, 3002, 29502);
compare_results(result, expected);
}

View File

@ -1,137 +0,0 @@
{
"generated_text": "\"\"\"Test the contents of the contents of the contents. \"\"\" test_test",
"details": {
"finish_reason": "length",
"generated_tokens": 20,
"seed": null,
"prefill": [
{
"id": 0,
"text": "<pad>",
"logprob": null
}
],
"tokens": [
{
"id": 259,
"text": "",
"logprob": -1.3656927,
"special": false
},
{
"id": 215100,
"text": "\"\"\"",
"logprob": -2.6551573,
"special": false
},
{
"id": 46138,
"text": "Test",
"logprob": -1.8059857,
"special": false
},
{
"id": 287,
"text": " the",
"logprob": -1.2102449,
"special": false
},
{
"id": 259,
"text": " ",
"logprob": -1.6057279,
"special": false
},
{
"id": 49076,
"text": "contents",
"logprob": -3.6060903,
"special": false
},
{
"id": 304,
"text": " of",
"logprob": -0.5270343,
"special": false
},
{
"id": 287,
"text": " the",
"logprob": -0.62522805,
"special": false
},
{
"id": 259,
"text": " ",
"logprob": -1.4069618,
"special": false
},
{
"id": 49076,
"text": "contents",
"logprob": -2.621994,
"special": false
},
{
"id": 304,
"text": " of",
"logprob": -1.3172221,
"special": false
},
{
"id": 287,
"text": " the",
"logprob": -0.3501925,
"special": false
},
{
"id": 259,
"text": " ",
"logprob": -0.7219573,
"special": false
},
{
"id": 49076,
"text": "contents",
"logprob": -1.0494149,
"special": false
},
{
"id": 260,
"text": ".",
"logprob": -1.0803378,
"special": false
},
{
"id": 259,
"text": " ",
"logprob": -0.32933083,
"special": false
},
{
"id": 215100,
"text": "\"\"\"",
"logprob": -0.11268901,
"special": false
},
{
"id": 2978,
"text": " test",
"logprob": -1.5846587,
"special": false
},
{
"id": 290,
"text": "_",
"logprob": -0.49796978,
"special": false
},
{
"id": 4125,
"text": "test",
"logprob": -2.0026445,
"special": false
}
]
}
}

View File

@ -129,7 +129,7 @@ class BLOOMSharded(BLOOM):
parameters = dict(model.named_parameters()) parameters = dict(model.named_parameters())
for file in filenames: for file in filenames:
with safe_open( with safe_open(
file, framework="pt", device=str(device) if not quantize else "cpu" file, framework="pt", device=str(device) if quantize is None else "cpu"
) as f: ) as f:
for name in f.keys(): for name in f.keys():
full_name = f"transformer.{name}" full_name = f"transformer.{name}"

View File

@ -21,16 +21,14 @@
import torch import torch
import torch.distributed import torch.distributed
from torch.nn import functional as F
from torch import nn from torch import nn
from transformers.activations import ACT2FN from transformers.activations import ACT2FN
from typing import Optional from typing import Optional
# Flash attention imports # Flash attention imports
import flash_attn_cuda import flash_attn_cuda
import dropout_layer_norm
from flash_attn.layers.rotary import RotaryEmbedding
from text_generation_server.utils.layers import ( from text_generation_server.utils.layers import (
FastLinear, FastLinear,
TensorParallelRowLinear, TensorParallelRowLinear,
@ -332,15 +330,15 @@ class FlashLlamaModel(torch.nn.Module):
self.head_size = self.layers[0].self_attn.head_size self.head_size = self.layers[0].self_attn.head_size
self.num_heads = self.layers[0].self_attn.num_heads self.num_heads = self.layers[0].self_attn.num_heads
def post_load_weights(self, load_in_8bit: bool = False): def post_load_weights(self, quantize: Optional[str] = None):
if isinstance(self.embed_tokens, TensorParallelEmbedding): if isinstance(self.embed_tokens, TensorParallelEmbedding):
self.embed_tokens.add_null_idx() self.embed_tokens.add_null_idx()
for layer in self.layers: for layer in self.layers:
layer: FlashLlamaLayer layer: FlashLlamaLayer
layer.self_attn.query_key_value.prepare_weights(load_in_8bit) layer.self_attn.query_key_value.prepare_weights(quantize)
layer.self_attn.o_proj.prepare_weights(load_in_8bit) layer.self_attn.o_proj.prepare_weights(quantize)
layer.mlp.gate_up_proj.prepare_weights(load_in_8bit) layer.mlp.gate_up_proj.prepare_weights(quantize)
layer.mlp.down_proj.prepare_weights(load_in_8bit) layer.mlp.down_proj.prepare_weights(quantize)
def forward( def forward(
self, self,
@ -429,8 +427,8 @@ class FlashLlamaForCausalLM(torch.nn.Module):
else: else:
self.lm_head = FastLinear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = FastLinear(config.hidden_size, config.vocab_size, bias=False)
def post_load_weights(self, load_in_8bit: bool = False): def post_load_weights(self, quantize: Optional[str] = None):
self.model.post_load_weights(load_in_8bit) self.model.post_load_weights(quantize)
self.lm_head.prepare_weights() self.lm_head.prepare_weights()
def forward( def forward(

View File

@ -21,8 +21,6 @@
import torch import torch
import torch.distributed import torch.distributed
from torch.nn import functional as F
from torch import nn from torch import nn
from transformers.activations import ACT2FN from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel from transformers.modeling_utils import PreTrainedModel
@ -32,7 +30,6 @@ from typing import Optional
# Flash attention imports # Flash attention imports
import flash_attn_cuda import flash_attn_cuda
from flash_attn.layers.rotary import RotaryEmbedding
from text_generation_server.utils.layers import ( from text_generation_server.utils.layers import (
FastLinear, FastLinear,
TensorParallelRowLinear, TensorParallelRowLinear,
@ -345,16 +342,16 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
self.head_size = self.layers[0].attention.head_size self.head_size = self.layers[0].attention.head_size
self.num_heads = self.layers[0].attention.num_heads self.num_heads = self.layers[0].attention.num_heads
def post_load_weights(self, load_in_8bit=False): def post_load_weights(self, quantize: Optional[str] = None):
if isinstance(self.embed_in, TensorParallelEmbedding): if isinstance(self.embed_in, TensorParallelEmbedding):
self.embed_in.add_null_idx() self.embed_in.add_null_idx()
for layer in self.layers: for layer in self.layers:
layer: FlashNeoXLayer layer: FlashNeoXLayer
layer.attention.shuffle_qkv_dims() layer.attention.shuffle_qkv_dims()
layer.attention.query_key_value.prepare_weights(load_in_8bit) layer.attention.query_key_value.prepare_weights(quantize)
layer.attention.dense.prepare_weights(load_in_8bit) layer.attention.dense.prepare_weights(quantize)
layer.mlp.dense_h_to_4h.prepare_weights(load_in_8bit) layer.mlp.dense_h_to_4h.prepare_weights(quantize)
layer.mlp.dense_4h_to_h.prepare_weights(load_in_8bit) layer.mlp.dense_4h_to_h.prepare_weights(quantize)
@classmethod @classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
@ -457,8 +454,8 @@ class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel):
config.hidden_size, config.vocab_size, bias=False config.hidden_size, config.vocab_size, bias=False
) )
def post_load_weights(self, load_in_8bit=False): def post_load_weights(self, quantize: Optional[str] = None):
self.gpt_neox.post_load_weights(load_in_8bit) self.gpt_neox.post_load_weights(quantize)
self.embed_out.prepare_weights() self.embed_out.prepare_weights()
@classmethod @classmethod

View File

@ -1,8 +1,6 @@
import torch import torch
import torch.distributed import torch.distributed
import torch.nn.functional as F
from torch import nn from torch import nn
from transformers.activations import ACT2FN from transformers.activations import ACT2FN
from typing import Optional from typing import Optional
@ -261,16 +259,16 @@ class FlashSantacoderModel(nn.Module):
self.head_size = self.h[0].attn.head_size self.head_size = self.h[0].attn.head_size
self.num_heads = self.h[0].attn.num_heads self.num_heads = self.h[0].attn.num_heads
def post_load_weights(self, load_in_8bit: bool = False): def post_load_weights(self, quantize: Optional[str] = None):
if self.tp_embeddings: if self.tp_embeddings:
self.wte.add_null_idx() self.wte.add_null_idx()
self.wpe.add_null_idx() self.wpe.add_null_idx()
for layer in self.h: for layer in self.h:
layer: Block layer: Block
layer.attn.c_attn.prepare_weights(load_in_8bit) layer.attn.c_attn.prepare_weights(quantize)
layer.attn.c_proj.prepare_weights(load_in_8bit) layer.attn.c_proj.prepare_weights(quantize)
layer.mlp.c_fc.prepare_weights(load_in_8bit) layer.mlp.c_fc.prepare_weights(quantize)
layer.mlp.c_proj.prepare_weights(load_in_8bit) layer.mlp.c_proj.prepare_weights(quantize)
def forward( def forward(
self, self,
@ -347,8 +345,8 @@ class FlashSantacoderForCausalLM(nn.Module):
else: else:
self.lm_head = FastLinear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = FastLinear(config.hidden_size, config.vocab_size, bias=False)
def post_load_weights(self, load_in_8bit: bool = False): def post_load_weights(self, quantize: Optional[str] = None):
self.transformer.post_load_weights(load_in_8bit) self.transformer.post_load_weights(quantize)
self.lm_head.prepare_weights() self.lm_head.prepare_weights()
def forward( def forward(

View File

@ -28,7 +28,12 @@ tracer = trace.get_tracer(__name__)
class FlashLlama(FlashCausalLM): class FlashLlama(FlashCausalLM):
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False): def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
):
if torch.cuda.is_available(): if torch.cuda.is_available():
device = torch.device("cuda") device = torch.device("cuda")
dtype = torch.float16 dtype = torch.float16
@ -72,14 +77,14 @@ class FlashLlama(FlashCausalLM):
def load_weights( def load_weights(
model, model,
filenames: List[Path], filenames: List[Path],
quantize: bool, quantize: Optional[str],
device: torch.device, device: torch.device,
dtype: torch.dtype, dtype: torch.dtype,
): ):
for filename in filenames: for filename in filenames:
state_dict = torch.load(filename, map_location="cpu") state_dict = torch.load(filename, map_location="cpu")
for key, value in state_dict.items(): for key, value in state_dict.items():
value = value.to(device if not quantize else "cpu").to(dtype) value = value.to(device if quantize is None else "cpu").to(dtype)
layer_name = ".".join(key.split(".")[:4]) layer_name = ".".join(key.split(".")[:4])
@ -199,7 +204,7 @@ class FlashLlamaSharded(FlashLlama):
def load_weights( def load_weights(
model, model,
filenames: List[str], filenames: List[str],
quantize: bool, quantize: Optional[str],
device: torch.device, device: torch.device,
dtype: torch.dtype, dtype: torch.dtype,
rank: int, rank: int,
@ -207,7 +212,7 @@ class FlashLlamaSharded(FlashLlama):
): ):
for file in filenames: for file in filenames:
with safe_open( with safe_open(
file, framework="pt", device=str(device) if not quantize else "cpu" file, framework="pt", device=str(device) if quantize is None else "cpu"
) as f: ) as f:
for name in f.keys(): for name in f.keys():
slice_ = f.get_slice(name) slice_ = f.get_slice(name)

View File

@ -23,7 +23,12 @@ tracer = trace.get_tracer(__name__)
class FlashNeoX(FlashCausalLM): class FlashNeoX(FlashCausalLM):
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False): def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
):
super(FlashNeoX, self).__init__( super(FlashNeoX, self).__init__(
FlashGPTNeoXForCausalLM, model_id, revision, quantize FlashGPTNeoXForCausalLM, model_id, revision, quantize
) )
@ -31,7 +36,10 @@ class FlashNeoX(FlashCausalLM):
class FlashNeoXSharded(FlashNeoX): class FlashNeoXSharded(FlashNeoX):
def __init__( def __init__(
self, model_id: str, revision: Optional[str] = None, quantize: bool = False self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
): ):
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():
@ -89,7 +97,7 @@ class FlashNeoXSharded(FlashNeoX):
parameters = dict(model.named_parameters()) parameters = dict(model.named_parameters())
for file in filenames: for file in filenames:
with safe_open( with safe_open(
file, framework="pt", device=str(device) if not quantize else "cpu" file, framework="pt", device=str(device) if quantize is None else "cpu"
) as f: ) as f:
for name in f.keys(): for name in f.keys():
module_name, param_name = name.rsplit(".", 1) module_name, param_name = name.rsplit(".", 1)

View File

@ -27,7 +27,12 @@ tracer = trace.get_tracer(__name__)
class FlashSantacoder(FlashCausalLM): class FlashSantacoder(FlashCausalLM):
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False): def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
):
if torch.cuda.is_available(): if torch.cuda.is_available():
device = torch.device("cuda") device = torch.device("cuda")
dtype = torch.float16 dtype = torch.float16
@ -84,7 +89,7 @@ class FlashSantacoder(FlashCausalLM):
for filename in filenames: for filename in filenames:
state_dict = torch.load(filename, map_location="cpu") state_dict = torch.load(filename, map_location="cpu")
for key, value in state_dict.items(): for key, value in state_dict.items():
value = value.to(device if not quantize else "cpu").to(dtype) value = value.to(device if quantize is None else "cpu").to(dtype)
layer_name = ".".join(key.split(".")[:4]) layer_name = ".".join(key.split(".")[:4])
@ -170,7 +175,10 @@ class FlashSantacoder(FlashCausalLM):
class FlashSantacoderSharded(FlashSantacoder): class FlashSantacoderSharded(FlashSantacoder):
def __init__( def __init__(
self, model_id: str, revision: Optional[str] = None, quantize: bool = False self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
): ):
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():
@ -221,7 +229,7 @@ class FlashSantacoderSharded(FlashSantacoder):
def load_weights( def load_weights(
model, model,
filenames: List[str], filenames: List[str],
quantize: bool, quantize: Optional[str],
device: torch.device, device: torch.device,
dtype: torch.dtype, dtype: torch.dtype,
rank: int, rank: int,
@ -230,7 +238,7 @@ class FlashSantacoderSharded(FlashSantacoder):
): ):
for file in filenames: for file in filenames:
with safe_open( with safe_open(
file, framework="pt", device=str(device) if not quantize else "cpu" file, framework="pt", device=str(device) if quantize is None else "cpu"
) as f: ) as f:
for key in f.keys(): for key in f.keys():
slice_ = f.get_slice(key) slice_ = f.get_slice(key)

View File

@ -255,7 +255,7 @@ class GalacticaSharded(Galactica):
parameters = dict(model.named_parameters()) parameters = dict(model.named_parameters())
for file in filenames: for file in filenames:
with safe_open( with safe_open(
file, framework="pt", device=str(device) if not quantize else "cpu" file, framework="pt", device=str(device) if quantize is None else "cpu"
) as f: ) as f:
for name in f.keys(): for name in f.keys():
if name == "lm_head.weight": if name == "lm_head.weight":

View File

@ -94,7 +94,7 @@ class GPTNeoxSharded(CausalLM):
parameters = dict(model.named_parameters()) parameters = dict(model.named_parameters())
for file in filenames: for file in filenames:
with safe_open( with safe_open(
file, framework="pt", device=str(device) if not quantize else "cpu" file, framework="pt", device=str(device) if quantize is None else "cpu"
) as f: ) as f:
for name in f.keys(): for name in f.keys():
module_name, param_name = name.rsplit(".", 1) module_name, param_name = name.rsplit(".", 1)

View File

@ -48,7 +48,10 @@ class OPT(CausalLM):
class OPTSharded(OPT): class OPTSharded(OPT):
def __init__( def __init__(
self, model_id: str, revision: Optional[str] = None, quantize: bool = False self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
): ):
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():
@ -107,7 +110,7 @@ class OPTSharded(OPT):
parameters = dict(model.named_parameters()) parameters = dict(model.named_parameters())
for file in filenames: for file in filenames:
with safe_open( with safe_open(
file, framework="pt", device=str(device) if not quantize else "cpu" file, framework="pt", device=str(device) if quantize is None else "cpu"
) as f: ) as f:
for name in f.keys(): for name in f.keys():
if name == "lm_head.weight": if name == "lm_head.weight":

View File

@ -97,7 +97,7 @@ class T5Sharded(Seq2SeqLM):
parameters = dict(model.named_parameters()) parameters = dict(model.named_parameters())
for file in filenames: for file in filenames:
with safe_open( with safe_open(
file, framework="pt", device=str(device) if not quantize else "cpu" file, framework="pt", device=str(device) if quantize is None else "cpu"
) as f: ) as f:
for name in f.keys(): for name in f.keys():
module_name, param_name = name.rsplit(".", 1) module_name, param_name = name.rsplit(".", 1)

View File

@ -1,6 +1,8 @@
import torch import torch
from torch import nn from torch import nn
from torch.nn import functional as F
from typing import Optional
HAS_BITS_AND_BYTES = True HAS_BITS_AND_BYTES = True
try: try:
@ -22,7 +24,7 @@ class FastLinear(nn.Linear):
self.quantized = False self.quantized = False
self.bnb_linear = None self.bnb_linear = None
def prepare_weights(self, quantize: bool = False): def prepare_weights(self, quantize: Optional[str] = None):
if quantize == "bitsandbytes": if quantize == "bitsandbytes":
if not HAS_BITS_AND_BYTES: if not HAS_BITS_AND_BYTES:
raise ImportError( raise ImportError(
@ -126,6 +128,7 @@ class TensorParallelEmbedding(nn.Embedding):
num_embeddings, num_embeddings,
embedding_dim, embedding_dim,
process_group: torch.distributed.ProcessGroup, process_group: torch.distributed.ProcessGroup,
reduce=True,
padding_idx=None, padding_idx=None,
max_norm=None, max_norm=None,
norm_type=2.0, norm_type=2.0,
@ -135,6 +138,7 @@ class TensorParallelEmbedding(nn.Embedding):
device=None, device=None,
dtype=None, dtype=None,
): ):
self.reduce = reduce
self.process_group = process_group self.process_group = process_group
self.tp_rank = process_group.rank() self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size() self.tp_world_size = process_group.size()
@ -177,7 +181,8 @@ class TensorParallelEmbedding(nn.Embedding):
input - self.min_id, input - self.min_id,
) )
out = super().forward(input) out = super().forward(input)
torch.distributed.all_reduce(out, group=self.process_group) if self.reduce:
torch.distributed.all_reduce(out, group=self.process_group)
return out return out