parent
70f485bf9f
commit
e74bd41e0f
16
Dockerfile
16
Dockerfile
|
@ -88,7 +88,6 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-ins
|
|||
RUN /opt/conda/bin/conda install -c "nvidia/label/cuda-11.8.0" cuda==11.8 && \
|
||||
/opt/conda/bin/conda clean -ya
|
||||
|
||||
|
||||
# Build Flash Attention CUDA kernels
|
||||
FROM kernel-builder as flash-att-builder
|
||||
|
||||
|
@ -109,6 +108,16 @@ COPY server/custom_kernels/ .
|
|||
# Build specific version of transformers
|
||||
RUN python setup.py build
|
||||
|
||||
# Build vllm CUDA kernels
|
||||
FROM kernel-builder as vllm-builder
|
||||
|
||||
WORKDIR /usr/src
|
||||
|
||||
COPY server/Makefile-vllm Makefile
|
||||
|
||||
# Build specific version of vllm
|
||||
RUN make build-vllm
|
||||
|
||||
# Text Generation Inference base image
|
||||
FROM nvidia/cuda:11.8.0-base-ubuntu20.04 as base
|
||||
|
||||
|
@ -137,9 +146,12 @@ COPY --from=flash-att-builder /usr/src/flash-attention/build/lib.linux-x86_64-cp
|
|||
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/layer_norm/build/lib.linux-x86_64-cpython-39 /opt/conda/lib/python3.9/site-packages
|
||||
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/rotary/build/lib.linux-x86_64-cpython-39 /opt/conda/lib/python3.9/site-packages
|
||||
|
||||
# Copy build artifacts from transformers builder
|
||||
# Copy build artifacts from custom kernels builder
|
||||
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-39/custom_kernels /usr/src/custom-kernels/src/custom_kernels
|
||||
|
||||
# Copy builds artifacts from vllm builder
|
||||
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-39 /opt/conda/lib/python3.9/site-packages
|
||||
|
||||
# Install flash-attention dependencies
|
||||
RUN pip install einops --no-cache-dir
|
||||
|
||||
|
|
|
@ -43,8 +43,8 @@ to power LLMs api-inference widgets.
|
|||
- Tensor Parallelism for faster inference on multiple GPUs
|
||||
- Token streaming using Server-Sent Events (SSE)
|
||||
- [Continuous batching of incoming requests](https://github.com/huggingface/text-generation-inference/tree/main/router) for increased total throughput
|
||||
- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) on the most popular architectures
|
||||
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
|
||||
- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
|
||||
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323)
|
||||
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
|
||||
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
|
||||
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
|
||||
|
|
|
@ -13,6 +13,7 @@ async def flash_neox(flash_neox_handle):
|
|||
return flash_neox_handle.client
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
@pytest.mark.asyncio
|
||||
async def test_flash_neox(flash_neox, response_snapshot):
|
||||
response = await flash_neox.generate(
|
||||
|
@ -25,6 +26,7 @@ async def test_flash_neox(flash_neox, response_snapshot):
|
|||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
@pytest.mark.asyncio
|
||||
async def test_flash_neox_load(flash_neox, generate_load, response_snapshot):
|
||||
responses = await generate_load(
|
||||
|
|
|
@ -115,12 +115,6 @@ struct Args {
|
|||
#[clap(default_value = "1512", long, env)]
|
||||
max_total_tokens: usize,
|
||||
|
||||
/// The maximum allowed batch size during dynamic batching.
|
||||
/// Using `max_batch_total_tokens` should be favored in general
|
||||
/// as it's a finer way to control RAM usage.
|
||||
#[clap(long, env)]
|
||||
max_batch_size: Option<usize>,
|
||||
|
||||
/// This represents the ratio of waiting queries vs running queries where
|
||||
/// you want to start considering pausing the running queries to include the waiting
|
||||
/// ones into the same batch.
|
||||
|
@ -134,6 +128,12 @@ struct Args {
|
|||
#[clap(default_value = "1.2", long, env)]
|
||||
waiting_served_ratio: f32,
|
||||
|
||||
/// Limits the number of tokens for the prefill operation.
|
||||
/// Since this operation take the most memory and is compute bound, it is interesting
|
||||
/// to limit the number of requests that can be sent.
|
||||
#[clap(default_value = "4096", long, env)]
|
||||
max_batch_prefill_tokens: u32,
|
||||
|
||||
/// **IMPORTANT** This is one critical control to allow maximum usage
|
||||
/// of the available hardware.
|
||||
///
|
||||
|
@ -146,19 +146,12 @@ struct Args {
|
|||
/// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
|
||||
/// or a single query of `1000` tokens.
|
||||
///
|
||||
/// So you don't have to control that finely
|
||||
/// `max_batch_size` or `max_total_tokens`. In fact you could mostly relax them if you
|
||||
/// want maximum flexibility. However, for your users if they are asking for the full amount of
|
||||
/// total tokens, they are likely to wait for a very long time to get a spot
|
||||
/// in the batch (since they are going to be alone) so setting `max_batch_size`
|
||||
/// and `max_total_tokens` can still be useful to prevent those long waiting times.
|
||||
///
|
||||
/// Overall this number should be the largest possible amount that fits the
|
||||
/// remaining memory (after the model is loaded). Since the actual memory overhead
|
||||
/// depends on other parameters like if you're using quantization, flash attention
|
||||
/// or the model implementation, text-generation-inference cannot infer this number
|
||||
/// automatically.
|
||||
#[clap(default_value = "32000", long, env)]
|
||||
#[clap(default_value = "16000", long, env)]
|
||||
max_batch_total_tokens: u32,
|
||||
|
||||
/// This setting defines how many tokens can be passed before forcing the waiting
|
||||
|
@ -180,9 +173,9 @@ struct Args {
|
|||
/// for end users.
|
||||
#[clap(default_value = "20", long, env)]
|
||||
max_waiting_tokens: usize,
|
||||
#[clap(default_value = "3000", long, short, env)]
|
||||
|
||||
/// The port to listen on.
|
||||
#[clap(default_value = "3000", long, short, env)]
|
||||
port: u16,
|
||||
|
||||
/// The name of the socket for gRPC communication between the webserver
|
||||
|
@ -329,6 +322,12 @@ fn shard_manager(
|
|||
// Copy current process env
|
||||
let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();
|
||||
|
||||
// Use cuda allocator. It leads to less memory fragmentation
|
||||
env.push((
|
||||
"PYTORCH_CUDA_ALLOC_CONF".into(),
|
||||
"backend:cudaMallocAsync".into(),
|
||||
));
|
||||
|
||||
// Torch Distributed Env vars
|
||||
env.push(("RANK".into(), rank.to_string().into()));
|
||||
env.push(("WORLD_SIZE".into(), world_size.to_string().into()));
|
||||
|
@ -446,7 +445,7 @@ fn shard_manager(
|
|||
|
||||
// We received a shutdown signal
|
||||
if *shutdown.lock().unwrap() {
|
||||
p.terminate().unwrap();
|
||||
p.kill().unwrap();
|
||||
let _ = p.wait_timeout(Duration::from_secs(90));
|
||||
tracing::info!("Shard {rank} terminated");
|
||||
return;
|
||||
|
@ -822,6 +821,10 @@ fn spawn_webserver(
|
|||
args.max_input_length.to_string(),
|
||||
"--max-total-tokens".to_string(),
|
||||
args.max_total_tokens.to_string(),
|
||||
"--max-batch-prefill-tokens".to_string(),
|
||||
args.max_batch_prefill_tokens.to_string(),
|
||||
"--max-batch-total-tokens".to_string(),
|
||||
args.max_batch_total_tokens.to_string(),
|
||||
"--waiting-served-ratio".to_string(),
|
||||
args.waiting_served_ratio.to_string(),
|
||||
"--max-waiting-tokens".to_string(),
|
||||
|
@ -834,15 +837,6 @@ fn spawn_webserver(
|
|||
args.model_id,
|
||||
];
|
||||
|
||||
// Deprecate max_batch_size
|
||||
if let Some(max_batch_size) = args.max_batch_size {
|
||||
argv.push("--max-batch-size".to_string());
|
||||
argv.push(max_batch_size.to_string())
|
||||
} else {
|
||||
argv.push("--max-batch-total-tokens".to_string());
|
||||
argv.push(args.max_batch_total_tokens.to_string())
|
||||
}
|
||||
|
||||
// Model optional revision
|
||||
if let Some(ref revision) = args.revision {
|
||||
argv.push("--revision".to_string());
|
||||
|
|
|
@ -11,6 +11,8 @@ service TextGenerationService {
|
|||
rpc ClearCache (ClearCacheRequest) returns (ClearCacheResponse);
|
||||
/// Remove requests from a cached batch
|
||||
rpc FilterBatch (FilterBatchRequest) returns (FilterBatchResponse);
|
||||
/// Warmup the model and compute max cache size
|
||||
rpc Warmup (WarmupRequest) returns (WarmupResponse);
|
||||
/// Prefill batch and decode first token
|
||||
rpc Prefill (PrefillRequest) returns (PrefillResponse);
|
||||
/// Decode token for a list of prefilled batches
|
||||
|
@ -192,3 +194,13 @@ message DecodeResponse {
|
|||
/// Next batch (cached)
|
||||
optional CachedBatch batch = 2;
|
||||
}
|
||||
|
||||
message WarmupRequest {
|
||||
/// Batch to warmup on
|
||||
Batch batch = 1;
|
||||
/// Maximum number of tokens that the client will send
|
||||
uint32 max_total_tokens = 2;
|
||||
}
|
||||
|
||||
/// Empty response
|
||||
message WarmupResponse {}
|
||||
|
|
|
@ -3,6 +3,7 @@ use crate::pb::generate::v1::text_generation_service_client::TextGenerationServi
|
|||
use crate::pb::generate::v1::*;
|
||||
use crate::Result;
|
||||
use grpc_metadata::InjectTelemetryContext;
|
||||
use std::cmp::min;
|
||||
use tonic::transport::{Channel, Uri};
|
||||
use tracing::instrument;
|
||||
|
||||
|
@ -94,6 +95,63 @@ impl Client {
|
|||
Ok(filtered_batch.batch)
|
||||
}
|
||||
|
||||
/// Warmup on a max size batch
|
||||
///
|
||||
/// Returns the maximum amount of tokens supported by the hardware
|
||||
#[instrument(skip(self))]
|
||||
pub async fn warmup(
|
||||
&mut self,
|
||||
max_input_length: u32,
|
||||
max_prefill_tokens: u32,
|
||||
max_total_tokens: u32,
|
||||
) -> Result<()> {
|
||||
let mut n_tokens = 0;
|
||||
let mut requests = Vec::new();
|
||||
|
||||
// Create requests
|
||||
while n_tokens < max_prefill_tokens {
|
||||
requests.push(Request {
|
||||
id: 0,
|
||||
// We truncate the input on the server side to be sure that it has the correct size
|
||||
inputs: "_test ".to_string().repeat(max_input_length as usize),
|
||||
truncate: min(max_input_length, max_prefill_tokens - n_tokens),
|
||||
// Set sampling parameters to also take these ops into account in the max memory
|
||||
parameters: Some(NextTokenChooserParameters {
|
||||
temperature: 0.9,
|
||||
top_k: 10,
|
||||
top_p: 0.9,
|
||||
typical_p: 0.9,
|
||||
do_sample: false,
|
||||
seed: 0,
|
||||
repetition_penalty: 1.2,
|
||||
watermark: true,
|
||||
}),
|
||||
stopping_parameters: Some(StoppingCriteriaParameters {
|
||||
max_new_tokens: 2,
|
||||
stop_sequences: vec![],
|
||||
ignore_eos_token: false,
|
||||
}),
|
||||
prefill_logprobs: true,
|
||||
});
|
||||
n_tokens += max_input_length;
|
||||
}
|
||||
|
||||
let batch = Batch {
|
||||
id: 0,
|
||||
size: requests.len() as u32,
|
||||
requests,
|
||||
max_tokens: 0,
|
||||
};
|
||||
|
||||
let request = tonic::Request::new(WarmupRequest {
|
||||
batch: Some(batch),
|
||||
max_total_tokens,
|
||||
})
|
||||
.inject_context();
|
||||
self.stub.warmup(request).await?.into_inner();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Generate one token for each request in the given batch
|
||||
///
|
||||
/// Returns Generation for each request in batch
|
||||
|
|
|
@ -87,6 +87,27 @@ impl ShardedClient {
|
|||
join_all(futures).await.pop().unwrap()
|
||||
}
|
||||
|
||||
/// Warmup on a max size batch
|
||||
///
|
||||
/// Returns the maximum amount of tokens supported by the hardware
|
||||
#[instrument(skip(self))]
|
||||
pub async fn warmup(
|
||||
&mut self,
|
||||
max_input_length: u32,
|
||||
max_prefill_tokens: u32,
|
||||
max_total_tokens: u32,
|
||||
) -> Result<()> {
|
||||
let futures: Vec<_> = self
|
||||
.clients
|
||||
.iter_mut()
|
||||
.map(|client| {
|
||||
Box::pin(client.warmup(max_input_length, max_prefill_tokens, max_total_tokens))
|
||||
})
|
||||
.collect();
|
||||
// all shards return the same message
|
||||
join_all(futures).await.pop().unwrap()
|
||||
}
|
||||
|
||||
/// Generate one token for each request in the given batch
|
||||
///
|
||||
/// Returns Generation for each request in batch
|
||||
|
|
|
@ -45,6 +45,7 @@ impl Infer {
|
|||
client: ShardedClient,
|
||||
validation: Validation,
|
||||
waiting_served_ratio: f32,
|
||||
max_batch_prefill_tokens: u32,
|
||||
max_batch_total_tokens: u32,
|
||||
max_waiting_tokens: usize,
|
||||
max_concurrent_requests: usize,
|
||||
|
@ -61,6 +62,7 @@ impl Infer {
|
|||
tokio::spawn(batching_task(
|
||||
client,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
queue.clone(),
|
||||
|
@ -240,9 +242,11 @@ impl Infer {
|
|||
/// Will be launched in a background Tokio task
|
||||
///
|
||||
/// Batches requests and sends them to the inference server
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
async fn batching_task(
|
||||
mut client: ShardedClient,
|
||||
waiting_served_ratio: f32,
|
||||
max_batch_prefill_tokens: u32,
|
||||
max_batch_total_tokens: u32,
|
||||
max_waiting_tokens: usize,
|
||||
queue: Queue,
|
||||
|
@ -257,8 +261,9 @@ async fn batching_task(
|
|||
// Get the next batch from the queue
|
||||
// This batch might be smaller than the maximum batch size if there are not enough requests
|
||||
// waiting in the queue
|
||||
while let Some((mut entries, batch, span)) =
|
||||
queue.next_batch(None, max_batch_total_tokens).await
|
||||
while let Some((mut entries, batch, span)) = queue
|
||||
.next_batch(None, max_batch_prefill_tokens, max_batch_total_tokens)
|
||||
.await
|
||||
{
|
||||
let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health)
|
||||
.instrument(span)
|
||||
|
@ -284,11 +289,12 @@ async fn batching_task(
|
|||
Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
|
||||
};
|
||||
|
||||
let token_budget = max_batch_total_tokens - batch_max_tokens;
|
||||
let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens);
|
||||
|
||||
// Try to get a new batch
|
||||
if let Some((mut new_entries, new_batch, span)) =
|
||||
queue.next_batch(min_size, token_budget).await
|
||||
if let Some((mut new_entries, new_batch, span)) = queue
|
||||
.next_batch(min_size, max_batch_prefill_tokens, token_budget)
|
||||
.await
|
||||
{
|
||||
// Tracking metrics
|
||||
if min_size.is_some() {
|
||||
|
|
|
@ -32,10 +32,10 @@ struct Args {
|
|||
max_input_length: usize,
|
||||
#[clap(default_value = "1512", long, env)]
|
||||
max_total_tokens: usize,
|
||||
#[clap(long, env)]
|
||||
max_batch_size: Option<usize>,
|
||||
#[clap(default_value = "1.2", long, env)]
|
||||
waiting_served_ratio: f32,
|
||||
#[clap(default_value = "4096", long, env)]
|
||||
max_batch_prefill_tokens: u32,
|
||||
#[clap(default_value = "32000", long, env)]
|
||||
max_batch_total_tokens: u32,
|
||||
#[clap(default_value = "20", long, env)]
|
||||
|
@ -78,9 +78,9 @@ fn main() -> Result<(), std::io::Error> {
|
|||
max_stop_sequences,
|
||||
max_input_length,
|
||||
max_total_tokens,
|
||||
max_batch_size,
|
||||
waiting_served_ratio,
|
||||
mut max_batch_total_tokens,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
port,
|
||||
master_shard_uds_path,
|
||||
|
@ -141,12 +141,6 @@ fn main() -> Result<(), std::io::Error> {
|
|||
.block_on(async {
|
||||
init_logging(otlp_endpoint, json_output);
|
||||
|
||||
if let Some(max_batch_size) = max_batch_size {
|
||||
tracing::warn!("`max-batch-size` is deprecated. Use `max-batch-total-tokens` instead");
|
||||
max_batch_total_tokens = (max_batch_size * max_total_tokens) as u32;
|
||||
tracing::warn!("Overriding `max-batch-total-tokens` value with `max-batch-size` * `max-total-tokens` = {max_batch_total_tokens}");
|
||||
}
|
||||
|
||||
if tokenizer.is_none() {
|
||||
tracing::warn!(
|
||||
"Could not find a fast tokenizer implementation for {tokenizer_name}"
|
||||
|
@ -161,10 +155,16 @@ fn main() -> Result<(), std::io::Error> {
|
|||
sha: None,
|
||||
pipeline_tag: None,
|
||||
},
|
||||
false => get_model_info(&tokenizer_name, &revision, authorization_token).await.unwrap_or_else(|| {
|
||||
tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
|
||||
HubModelInfo { model_id: tokenizer_name.to_string(), sha: None, pipeline_tag: None }
|
||||
}),
|
||||
false => get_model_info(&tokenizer_name, &revision, authorization_token)
|
||||
.await
|
||||
.unwrap_or_else(|| {
|
||||
tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
|
||||
HubModelInfo {
|
||||
model_id: tokenizer_name.to_string(),
|
||||
sha: None,
|
||||
pipeline_tag: None,
|
||||
}
|
||||
}),
|
||||
};
|
||||
|
||||
// if pipeline-tag == text-generation we default to return_full_text = true
|
||||
|
@ -190,6 +190,17 @@ fn main() -> Result<(), std::io::Error> {
|
|||
.info()
|
||||
.await
|
||||
.expect("Unable to get shard info");
|
||||
|
||||
// Warmup model
|
||||
tracing::info!("Warming up model");
|
||||
sharded_client
|
||||
.warmup(
|
||||
max_input_length as u32,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
)
|
||||
.await
|
||||
.expect("Unable to warmup model");
|
||||
tracing::info!("Connected");
|
||||
|
||||
// Binds on localhost
|
||||
|
@ -206,6 +217,7 @@ fn main() -> Result<(), std::io::Error> {
|
|||
max_input_length,
|
||||
max_total_tokens,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
sharded_client,
|
||||
|
@ -219,7 +231,7 @@ fn main() -> Result<(), std::io::Error> {
|
|||
ngrok_username,
|
||||
ngrok_password,
|
||||
)
|
||||
.await;
|
||||
.await;
|
||||
Ok(())
|
||||
})
|
||||
}
|
||||
|
|
|
@ -58,6 +58,7 @@ impl Queue {
|
|||
pub(crate) async fn next_batch(
|
||||
&self,
|
||||
min_size: Option<usize>,
|
||||
prefill_token_budget: u32,
|
||||
token_budget: u32,
|
||||
) -> Option<NextBatch> {
|
||||
// Create response channel
|
||||
|
@ -67,6 +68,7 @@ impl Queue {
|
|||
self.queue_sender
|
||||
.send(QueueCommand::NextBatch {
|
||||
min_size,
|
||||
prefill_token_budget,
|
||||
token_budget,
|
||||
response_sender,
|
||||
span: Span::current(),
|
||||
|
@ -90,11 +92,12 @@ async fn queue_task(requires_padding: bool, receiver: flume::Receiver<QueueComma
|
|||
}
|
||||
QueueCommand::NextBatch {
|
||||
min_size,
|
||||
prefill_token_budget,
|
||||
token_budget,
|
||||
response_sender,
|
||||
span,
|
||||
} => span.in_scope(|| {
|
||||
let next_batch = state.next_batch(min_size, token_budget);
|
||||
let next_batch = state.next_batch(min_size, prefill_token_budget, token_budget);
|
||||
response_sender.send(next_batch).unwrap();
|
||||
metrics::gauge!("tgi_queue_size", state.entries.len() as f64);
|
||||
}),
|
||||
|
@ -140,7 +143,12 @@ impl State {
|
|||
}
|
||||
|
||||
// Get the next batch
|
||||
fn next_batch(&mut self, min_size: Option<usize>, token_budget: u32) -> Option<NextBatch> {
|
||||
fn next_batch(
|
||||
&mut self,
|
||||
min_size: Option<usize>,
|
||||
prefill_token_budget: u32,
|
||||
token_budget: u32,
|
||||
) -> Option<NextBatch> {
|
||||
if self.entries.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
@ -184,7 +192,9 @@ impl State {
|
|||
|
||||
decode_tokens += entry.request.stopping_parameters.max_new_tokens;
|
||||
|
||||
if (prefill_tokens + decode_tokens) > token_budget {
|
||||
if prefill_tokens > prefill_token_budget
|
||||
|| (prefill_tokens + decode_tokens) > token_budget
|
||||
{
|
||||
// Entry is over budget
|
||||
// Add it back to the front
|
||||
self.entries.push_front((id, entry));
|
||||
|
@ -259,6 +269,7 @@ enum QueueCommand {
|
|||
Append(Box<Entry>, Span),
|
||||
NextBatch {
|
||||
min_size: Option<usize>,
|
||||
prefill_token_budget: u32,
|
||||
token_budget: u32,
|
||||
response_sender: oneshot::Sender<Option<NextBatch>>,
|
||||
span: Span,
|
||||
|
@ -328,8 +339,8 @@ mod tests {
|
|||
fn test_next_batch_empty() {
|
||||
let mut state = State::new(false);
|
||||
|
||||
assert!(state.next_batch(None, 1).is_none());
|
||||
assert!(state.next_batch(Some(1), 1).is_none());
|
||||
assert!(state.next_batch(None, 1, 1).is_none());
|
||||
assert!(state.next_batch(Some(1), 1, 1).is_none());
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -340,7 +351,7 @@ mod tests {
|
|||
state.append(entry1);
|
||||
state.append(entry2);
|
||||
|
||||
let (entries, batch, _) = state.next_batch(None, 2).unwrap();
|
||||
let (entries, batch, _) = state.next_batch(None, 2, 2).unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert!(entries.contains_key(&1));
|
||||
|
@ -356,7 +367,7 @@ mod tests {
|
|||
let (entry3, _guard3) = default_entry();
|
||||
state.append(entry3);
|
||||
|
||||
assert!(state.next_batch(Some(2), 2).is_none());
|
||||
assert!(state.next_batch(Some(2), 2, 2).is_none());
|
||||
|
||||
assert_eq!(state.next_id, 3);
|
||||
assert_eq!(state.entries.len(), 1);
|
||||
|
@ -372,7 +383,7 @@ mod tests {
|
|||
state.append(entry1);
|
||||
state.append(entry2);
|
||||
|
||||
let (entries, batch, _) = state.next_batch(None, 1).unwrap();
|
||||
let (entries, batch, _) = state.next_batch(None, 1, 1).unwrap();
|
||||
assert_eq!(entries.len(), 1);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert_eq!(batch.id, 0);
|
||||
|
@ -385,7 +396,7 @@ mod tests {
|
|||
let (entry3, _guard3) = default_entry();
|
||||
state.append(entry3);
|
||||
|
||||
let (entries, batch, _) = state.next_batch(None, 3).unwrap();
|
||||
let (entries, batch, _) = state.next_batch(None, 3, 3).unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
assert!(entries.contains_key(&1));
|
||||
assert!(entries.contains_key(&2));
|
||||
|
@ -408,8 +419,8 @@ mod tests {
|
|||
async fn test_queue_next_batch_empty() {
|
||||
let queue = Queue::new(false);
|
||||
|
||||
assert!(queue.next_batch(None, 1).await.is_none());
|
||||
assert!(queue.next_batch(Some(1), 1).await.is_none());
|
||||
assert!(queue.next_batch(None, 1, 1).await.is_none());
|
||||
assert!(queue.next_batch(Some(1), 1, 1).await.is_none());
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
|
@ -420,7 +431,7 @@ mod tests {
|
|||
queue.append(entry1);
|
||||
queue.append(entry2);
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, 2).await.unwrap();
|
||||
let (entries, batch, _) = queue.next_batch(None, 2, 2).await.unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert!(entries.contains_key(&1));
|
||||
|
@ -433,11 +444,11 @@ mod tests {
|
|||
queue.append(entry3);
|
||||
|
||||
// Not enough requests pending
|
||||
assert!(queue.next_batch(Some(2), 2).await.is_none());
|
||||
assert!(queue.next_batch(Some(2), 2, 2).await.is_none());
|
||||
// Not enough token budget
|
||||
assert!(queue.next_batch(Some(1), 0).await.is_none());
|
||||
assert!(queue.next_batch(Some(1), 0, 0).await.is_none());
|
||||
// Ok
|
||||
let (entries2, batch2, _) = queue.next_batch(Some(1), 2).await.unwrap();
|
||||
let (entries2, batch2, _) = queue.next_batch(Some(1), 2, 2).await.unwrap();
|
||||
assert_eq!(entries2.len(), 1);
|
||||
assert!(entries2.contains_key(&2));
|
||||
assert!(entries2.get(&2).unwrap().batch_time.is_some());
|
||||
|
@ -453,7 +464,7 @@ mod tests {
|
|||
queue.append(entry1);
|
||||
queue.append(entry2);
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, 1).await.unwrap();
|
||||
let (entries, batch, _) = queue.next_batch(None, 1, 1).await.unwrap();
|
||||
assert_eq!(entries.len(), 1);
|
||||
assert!(entries.contains_key(&0));
|
||||
assert_eq!(batch.id, 0);
|
||||
|
@ -462,7 +473,7 @@ mod tests {
|
|||
let (entry3, _guard3) = default_entry();
|
||||
queue.append(entry3);
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, 3).await.unwrap();
|
||||
let (entries, batch, _) = queue.next_batch(None, 3, 3).await.unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
assert!(entries.contains_key(&1));
|
||||
assert!(entries.contains_key(&2));
|
||||
|
@ -476,6 +487,6 @@ mod tests {
|
|||
let (entry, _) = default_entry();
|
||||
queue.append(entry);
|
||||
|
||||
assert!(queue.next_batch(None, 1).await.is_none());
|
||||
assert!(queue.next_batch(None, 1, 1).await.is_none());
|
||||
}
|
||||
}
|
||||
|
|
|
@ -514,6 +514,7 @@ pub async fn run(
|
|||
max_input_length: usize,
|
||||
max_total_tokens: usize,
|
||||
waiting_served_ratio: f32,
|
||||
max_batch_prefill_tokens: u32,
|
||||
max_batch_total_tokens: u32,
|
||||
max_waiting_tokens: usize,
|
||||
client: ShardedClient,
|
||||
|
@ -582,6 +583,7 @@ pub async fn run(
|
|||
client,
|
||||
validation,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_concurrent_requests,
|
||||
|
|
|
@ -0,0 +1,13 @@
|
|||
vllm_commit := d284b831c17f42a8ea63369a06138325f73c4cf9
|
||||
|
||||
vllm:
|
||||
# Clone vllm
|
||||
git clone https://github.com/OlivierDehaene/vllm.git
|
||||
|
||||
build-vllm: vllm
|
||||
cd vllm && git fetch && git checkout $(vllm_commit)
|
||||
cd vllm && python setup.py build
|
||||
|
||||
install-vllm: build-vllm
|
||||
pip uninstall vllm -y || true
|
||||
cd vllm && python setup.py install
|
|
@ -22,7 +22,9 @@ class Cache:
|
|||
del batch
|
||||
|
||||
def clear(self):
|
||||
self.cache.clear()
|
||||
keys = list(self.cache.keys())
|
||||
for k in keys:
|
||||
self.delete(k)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.cache.keys())
|
||||
|
|
|
@ -122,7 +122,7 @@ class CausalLMBatch(Batch):
|
|||
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
||||
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
|
||||
|
||||
max_tokens = len(inputs) * max_input_length + max_decode_tokens
|
||||
max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
|
|
|
@ -23,12 +23,16 @@ import torch.distributed
|
|||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from typing import Optional
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
# Flash attention imports
|
||||
import flash_attn_cuda
|
||||
import dropout_layer_norm
|
||||
|
||||
# vllm imports
|
||||
import vllm_cache_ops
|
||||
import vllm_attention_ops
|
||||
|
||||
from text_generation_server.utils.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
|
@ -106,7 +110,7 @@ class FlashLlamaAttention(torch.nn.Module):
|
|||
prefix=f"{prefix}.rotary_emb", weights=weights
|
||||
)
|
||||
|
||||
self.softmax_scale = self.head_size ** (-0.5)
|
||||
self.softmax_scale = self.head_size**-0.5
|
||||
|
||||
self.num_heads = self.num_heads // weights.process_group.size()
|
||||
self.query_key_value = TensorParallelColumnLinear.load_multi(
|
||||
|
@ -122,20 +126,22 @@ class FlashLlamaAttention(torch.nn.Module):
|
|||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_heads, dtype=torch.int32, device=weights.device
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
qkv = qkv.view(-1, 3, self.num_heads, self.head_size)
|
||||
|
@ -144,23 +150,25 @@ class FlashLlamaAttention(torch.nn.Module):
|
|||
self.rotary_emb(qkv[:, 0], cos, sin)
|
||||
self.rotary_emb(qkv[:, 1], cos, sin)
|
||||
|
||||
# Prefill
|
||||
if prefill:
|
||||
# Copy to layer past
|
||||
layer_past[...] = qkv[:, 1:]
|
||||
vllm_cache_ops.reshape_and_cache(
|
||||
qkv[:, 1], qkv[:, 2], kv_cache[0], kv_cache[1], slots
|
||||
)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(qkv[:, 0])
|
||||
# output tensor
|
||||
attn_output = torch.empty_like(qkv[:, 0])
|
||||
|
||||
# Prefill
|
||||
if start_seq_prefill is not None:
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
qkv[:, 0],
|
||||
qkv[:, 1],
|
||||
qkv[:, 2],
|
||||
attn_output,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
max_s,
|
||||
max_s,
|
||||
0.0,
|
||||
|
@ -173,31 +181,19 @@ class FlashLlamaAttention(torch.nn.Module):
|
|||
)
|
||||
# Decode
|
||||
else:
|
||||
query = qkv[:, 0]
|
||||
# Add present to the layer_past tensor at the correct indices
|
||||
layer_past[past_present_indices] = qkv[:, 1:]
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
layer_past[:, 0],
|
||||
layer_past[:, 1],
|
||||
# kv_cache[1] => [num_blocks, num_heads, head_size, block_size]
|
||||
block_size = kv_cache[1].shape[3]
|
||||
vllm_attention_ops.single_query_cached_kv_attention(
|
||||
attn_output,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq,
|
||||
end_seq,
|
||||
1,
|
||||
max_s,
|
||||
0.0,
|
||||
qkv[:, 0],
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -265,14 +261,13 @@ class FlashLlamaLayer(nn.Module):
|
|||
residual,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
|
||||
|
||||
|
@ -281,14 +276,13 @@ class FlashLlamaLayer(nn.Module):
|
|||
normed_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
# faster post attention rms norm
|
||||
|
@ -333,40 +327,18 @@ class FlashLlamaModel(torch.nn.Module):
|
|||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values=None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
):
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
start_seq_prefill: Optional[torch.Tensor],
|
||||
end_seq_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
|
||||
# Prefill
|
||||
if past_key_values is None:
|
||||
assert pre_allocate_past_size is not None
|
||||
|
||||
prefill = True
|
||||
|
||||
# Create past tensor
|
||||
# We create a tensor of the same size as input_ids as we don't want to slice at every layer
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
len(input_ids),
|
||||
len(self.layers),
|
||||
2,
|
||||
self.num_heads,
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
prefill = False
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
|
@ -380,34 +352,18 @@ class FlashLlamaModel(torch.nn.Module):
|
|||
residual,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
past_key_values[:, i],
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
if prefill:
|
||||
present = past_key_values
|
||||
# Create padded past tensor
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
pre_allocate_past_size,
|
||||
len(self.layers),
|
||||
2,
|
||||
self.num_heads,
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
# We slice only once instead of at every layer
|
||||
past_key_values[past_present_indices] = present
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
|
||||
return hidden_states, past_key_values
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashLlamaForCausalLM(torch.nn.Module):
|
||||
|
@ -423,31 +379,29 @@ class FlashLlamaForCausalLM(torch.nn.Module):
|
|||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
start_seq_prefill: Optional[torch.Tensor],
|
||||
end_seq_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
):
|
||||
hidden_states, present = self.model(
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values,
|
||||
pre_allocate_past_size,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits = self.lm_head(hidden_states)
|
||||
return logits, present
|
||||
return logits
|
||||
|
|
|
@ -25,11 +25,15 @@ from torch import nn
|
|||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.models.gpt_neox import GPTNeoXConfig
|
||||
from typing import Optional
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
# Flash attention imports
|
||||
import flash_attn_cuda
|
||||
|
||||
# vllm imports
|
||||
import vllm_cache_ops
|
||||
import vllm_attention_ops
|
||||
|
||||
from text_generation_server.utils.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
|
@ -110,20 +114,22 @@ class FlashNeoxAttention(torch.nn.Module):
|
|||
self.dense = load_row(
|
||||
config, prefix=f"{prefix}.dense", weights=weights, bias=True
|
||||
)
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_heads, dtype=torch.int32, device=weights.device
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
qkv = qkv.view(-1, 3, self.num_heads, self.head_size)
|
||||
|
@ -132,23 +138,25 @@ class FlashNeoxAttention(torch.nn.Module):
|
|||
self.rotary_emb(qkv[:, 0], cos, sin)
|
||||
self.rotary_emb(qkv[:, 1], cos, sin)
|
||||
|
||||
# Prefill
|
||||
if prefill:
|
||||
# Copy to layer past
|
||||
layer_past[...] = qkv[:, 1:]
|
||||
vllm_cache_ops.reshape_and_cache(
|
||||
qkv[:, 1], qkv[:, 2], kv_cache[0], kv_cache[1], slots
|
||||
)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(qkv[:, 0])
|
||||
# output tensor
|
||||
attn_output = torch.empty_like(qkv[:, 0])
|
||||
|
||||
# Prefill
|
||||
if start_seq_prefill is not None:
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
qkv[:, 0],
|
||||
qkv[:, 1],
|
||||
qkv[:, 2],
|
||||
attn_output,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
max_s,
|
||||
max_s,
|
||||
0.0,
|
||||
|
@ -161,31 +169,19 @@ class FlashNeoxAttention(torch.nn.Module):
|
|||
)
|
||||
# Decode
|
||||
else:
|
||||
query = qkv[:, 0]
|
||||
# Add present to the layer_past tensor at the correct indices
|
||||
layer_past[past_present_indices] = qkv[:, 1:]
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
layer_past[:, 0],
|
||||
layer_past[:, 1],
|
||||
# kv_cache[1] => [num_blocks, num_heads, head_size, block_size]
|
||||
block_size = kv_cache[1].shape[3]
|
||||
vllm_attention_ops.single_query_cached_kv_attention(
|
||||
attn_output,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq,
|
||||
end_seq,
|
||||
1,
|
||||
max_s,
|
||||
0.0,
|
||||
qkv[:, 0],
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
)
|
||||
|
||||
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -250,14 +246,13 @@ class FlashNeoXLayer(nn.Module):
|
|||
residual,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
if self.use_parallel_residual:
|
||||
ln1_hidden_states, _ = self.input_layernorm(hidden_states)
|
||||
|
@ -266,14 +261,13 @@ class FlashNeoXLayer(nn.Module):
|
|||
ln1_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
ln2_hidden_states, _ = self.post_attention_layernorm(hidden_states)
|
||||
|
@ -292,14 +286,13 @@ class FlashNeoXLayer(nn.Module):
|
|||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
|
@ -346,40 +339,18 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
|
|||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values=None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
):
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
start_seq_prefill: Optional[torch.Tensor],
|
||||
end_seq_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_in(input_ids)
|
||||
|
||||
# Prefill
|
||||
if past_key_values is None:
|
||||
assert pre_allocate_past_size is not None
|
||||
|
||||
prefill = True
|
||||
|
||||
# Create past tensor
|
||||
# We create a tensor of the same size as input_ids as we don't want to slice at every layer
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
len(input_ids),
|
||||
len(self.layers),
|
||||
2,
|
||||
self.num_heads,
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
prefill = False
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.layers[0].attention.rotary_emb.get_cos_sin(
|
||||
|
@ -393,34 +364,18 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
|
|||
residual,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
past_key_values[:, i],
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
if prefill:
|
||||
present = past_key_values
|
||||
# Create padded past tensor
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
pre_allocate_past_size,
|
||||
len(self.layers),
|
||||
2,
|
||||
self.num_heads,
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
# We slice only once instead of at every layer
|
||||
past_key_values[past_present_indices] = present
|
||||
|
||||
hidden_states, _ = self.final_layer_norm(hidden_states, residual)
|
||||
|
||||
return hidden_states, past_key_values
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel):
|
||||
|
@ -434,31 +389,29 @@ class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel):
|
|||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
start_seq_prefill: Optional[torch.Tensor],
|
||||
end_seq_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
):
|
||||
hidden_states, present = self.gpt_neox(
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.gpt_neox(
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values,
|
||||
pre_allocate_past_size,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits = self.embed_out(hidden_states)
|
||||
return logits, present
|
||||
return logits
|
||||
|
|
|
@ -4,11 +4,15 @@ import torch.distributed
|
|||
from torch import nn
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from typing import Optional
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
# Flash attention imports
|
||||
import flash_attn_cuda
|
||||
|
||||
# vllm imports
|
||||
import vllm_cache_ops
|
||||
import vllm_attention_ops
|
||||
|
||||
from text_generation_server.utils.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
|
@ -126,19 +130,27 @@ class FlashRWAttention(torch.nn.Module):
|
|||
config, prefix=f"{prefix}.dense", weights=weights, bias=config.bias
|
||||
)
|
||||
|
||||
if self.num_heads_kv == 1:
|
||||
self.kv_head_mapping = torch.zeros(
|
||||
self.num_heads, dtype=torch.int32, device=weights.device
|
||||
)
|
||||
else:
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_heads, dtype=torch.int32, device=weights.device
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
|
||||
|
@ -156,25 +168,29 @@ class FlashRWAttention(torch.nn.Module):
|
|||
self.rotary_emb(query, cos, sin)
|
||||
self.rotary_emb(torch.select(kv, dim=1, index=0), cos, sin)
|
||||
|
||||
# Prefill
|
||||
if prefill:
|
||||
# Copy to layer past
|
||||
layer_past[...] = kv
|
||||
# Expand to query shape
|
||||
kv = kv.expand(-1, 2, self.num_heads, self.head_size)
|
||||
vllm_cache_ops.reshape_and_cache(
|
||||
kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots
|
||||
)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
|
||||
# Prefill
|
||||
if start_seq_prefill is not None:
|
||||
if self.num_heads_kv == 1:
|
||||
# Expand to query shape
|
||||
kv = kv.expand(-1, 2, self.num_heads, self.head_size)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
attn_output,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
max_s,
|
||||
max_s,
|
||||
0.0,
|
||||
|
@ -187,32 +203,19 @@ class FlashRWAttention(torch.nn.Module):
|
|||
)
|
||||
# Decode
|
||||
else:
|
||||
# Add present to the layer_past tensor at the correct indices
|
||||
layer_past[past_present_indices] = kv
|
||||
# Expand to query shape
|
||||
kv = layer_past.expand(-1, 2, self.num_heads, self.head_size)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
# kv_cache[1] => [num_blocks, num_heads_kv, head_size, block_size]
|
||||
block_size = kv_cache[1].shape[3]
|
||||
vllm_attention_ops.single_query_cached_kv_attention(
|
||||
attn_output,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq,
|
||||
end_seq,
|
||||
1,
|
||||
max_s,
|
||||
0.0,
|
||||
query,
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
)
|
||||
|
||||
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -264,19 +267,22 @@ class FlashRWLargeAttention(torch.nn.Module):
|
|||
config, prefix=f"{prefix}.dense", weights=weights, bias=config.bias
|
||||
)
|
||||
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_groups, dtype=torch.int32, device=weights.device
|
||||
).repeat_interleave(self.num_heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
qkv = qkv.view(-1, self.num_groups, self.num_heads + 2, self.head_size)
|
||||
|
@ -293,10 +299,19 @@ class FlashRWLargeAttention(torch.nn.Module):
|
|||
self.rotary_emb(query, cos, sin)
|
||||
self.rotary_emb(torch.select(kv, dim=2, index=0), cos, sin)
|
||||
|
||||
vllm_cache_ops.reshape_and_cache(
|
||||
kv[:, :, 0].contiguous(),
|
||||
kv[:, :, 1].contiguous(),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
slots,
|
||||
)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
|
||||
# Prefill
|
||||
if prefill:
|
||||
# Copy to layer past
|
||||
layer_past[...] = kv
|
||||
if start_seq_prefill is not None:
|
||||
# Expand to query shape
|
||||
kv = (
|
||||
kv.unsqueeze(2)
|
||||
|
@ -304,18 +319,16 @@ class FlashRWLargeAttention(torch.nn.Module):
|
|||
.reshape(-1, self.num_groups * self.num_heads, 2, self.head_size)
|
||||
)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
torch.select(kv, dim=2, index=0),
|
||||
torch.select(kv, dim=2, index=1),
|
||||
attn_output,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
max_s,
|
||||
max_s,
|
||||
0.0,
|
||||
|
@ -328,36 +341,19 @@ class FlashRWLargeAttention(torch.nn.Module):
|
|||
)
|
||||
# Decode
|
||||
else:
|
||||
# Add present to the layer_past tensor at the correct indices
|
||||
layer_past[past_present_indices] = kv
|
||||
# Expand to query shape
|
||||
kv = (
|
||||
layer_past.unsqueeze(2)
|
||||
.expand(-1, self.num_groups, self.num_heads, 2, self.head_size)
|
||||
.reshape(-1, self.num_groups * self.num_heads, 2, self.head_size)
|
||||
)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
torch.select(kv, dim=2, index=0),
|
||||
torch.select(kv, dim=2, index=1),
|
||||
# kv_cache[1] => [num_blocks, num_groups, head_size, block_size]
|
||||
block_size = kv_cache[1].shape[3]
|
||||
vllm_attention_ops.single_query_cached_kv_attention(
|
||||
attn_output,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq,
|
||||
end_seq,
|
||||
1,
|
||||
max_s,
|
||||
0.0,
|
||||
query,
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
)
|
||||
|
||||
return self.dense(
|
||||
|
@ -432,14 +428,13 @@ class FlashRWLayer(nn.Module):
|
|||
residual,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
if self.parallel_attn:
|
||||
ln_hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
||||
|
@ -448,14 +443,13 @@ class FlashRWLayer(nn.Module):
|
|||
ln_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
mlp_output = self.mlp(ln_hidden_states)
|
||||
|
@ -472,14 +466,13 @@ class FlashRWLayer(nn.Module):
|
|||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
|
@ -523,14 +516,13 @@ class FlashRWLargeLayer(nn.Module):
|
|||
residual,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
ln_attn, residual = self.ln_attn(hidden_states, residual)
|
||||
ln_mlp, _ = self.ln_mlp(residual)
|
||||
|
@ -540,14 +532,13 @@ class FlashRWLargeLayer(nn.Module):
|
|||
ln_attn,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
# MLP.
|
||||
|
@ -580,11 +571,7 @@ class FlashRWModel(FlashRWPreTrainedModel):
|
|||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.cache_size = (
|
||||
2,
|
||||
self.h[0].self_attention.num_heads_kv,
|
||||
self.h[0].self_attention.head_size,
|
||||
)
|
||||
self.cache_size = self.h[0].self_attention.num_heads_kv
|
||||
elif config.model_type == "RefinedWeb":
|
||||
self.h = nn.ModuleList(
|
||||
[
|
||||
|
@ -592,11 +579,7 @@ class FlashRWModel(FlashRWPreTrainedModel):
|
|||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.cache_size = (
|
||||
self.h[0].self_attention.num_groups,
|
||||
2,
|
||||
self.h[0].self_attention.head_size,
|
||||
)
|
||||
self.cache_size = self.h[0].self_attention.num_groups
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"model_type {config.model_type} is not supported."
|
||||
|
@ -612,38 +595,18 @@ class FlashRWModel(FlashRWPreTrainedModel):
|
|||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values=None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
):
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
start_seq_prefill: Optional[torch.Tensor],
|
||||
end_seq_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.word_embeddings(input_ids)
|
||||
|
||||
# Prefill
|
||||
if past_key_values is None:
|
||||
assert pre_allocate_past_size is not None
|
||||
|
||||
prefill = True
|
||||
|
||||
# Create past tensor
|
||||
# We create a tensor of the same size as input_ids as we don't want to slice at every layer
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
len(input_ids),
|
||||
len(self.h),
|
||||
*self.cache_size,
|
||||
)
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
prefill = False
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.h[0].self_attention.rotary_emb.get_cos_sin(
|
||||
|
@ -657,32 +620,18 @@ class FlashRWModel(FlashRWPreTrainedModel):
|
|||
residual,
|
||||
cos,
|
||||
sin,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
torch.select(past_key_values, dim=1, index=i),
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
if prefill:
|
||||
present = past_key_values
|
||||
# Create padded past tensor
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
pre_allocate_past_size,
|
||||
len(self.h),
|
||||
*self.cache_size,
|
||||
)
|
||||
)
|
||||
# We slice only once instead of at every layer
|
||||
past_key_values[past_present_indices] = present
|
||||
|
||||
hidden_states, _ = self.ln_f(hidden_states, residual)
|
||||
|
||||
return hidden_states, past_key_values
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashRWForCausalLM(FlashRWPreTrainedModel):
|
||||
|
@ -697,31 +646,29 @@ class FlashRWForCausalLM(FlashRWPreTrainedModel):
|
|||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
start_seq_prefill: Optional[torch.Tensor],
|
||||
end_seq_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
):
|
||||
hidden_states, present = self.transformer(
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.transformer(
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values,
|
||||
pre_allocate_past_size,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits = self.lm_head(hidden_states)
|
||||
return logits, present
|
||||
return logits
|
||||
|
|
|
@ -3,11 +3,15 @@ import torch.distributed
|
|||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from typing import Optional
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
# Flash attention imports
|
||||
import flash_attn_cuda
|
||||
|
||||
# vllm imports
|
||||
import vllm_cache_ops
|
||||
import vllm_attention_ops
|
||||
|
||||
from text_generation_server.utils.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
|
@ -221,18 +225,20 @@ class FlashMQAttention(torch.nn.Module):
|
|||
self.c_proj = load_row(
|
||||
config, prefix=f"{prefix}.c_proj", weights=weights, bias=True
|
||||
)
|
||||
self.kv_head_mapping = torch.zeros(
|
||||
self.num_heads, dtype=torch.int32, device=weights.device
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
qkv = self.c_attn(hidden_states)
|
||||
|
||||
|
@ -245,25 +251,28 @@ class FlashMQAttention(torch.nn.Module):
|
|||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
key_value = key_value.view(-1, 2, 1, self.head_size)
|
||||
|
||||
vllm_cache_ops.reshape_and_cache(
|
||||
key_value[:, 0], key_value[:, 1], kv_cache[0], kv_cache[1], slots
|
||||
)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
|
||||
# Prefill
|
||||
if prefill:
|
||||
# Copy to layer past
|
||||
layer_past[...] = key_value
|
||||
if start_seq_prefill is not None:
|
||||
# Expand from 1 to num_heads
|
||||
key_value = key_value.expand(-1, 2, self.num_heads, self.head_size)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
torch.select(key_value, dim=1, index=0),
|
||||
torch.select(key_value, dim=1, index=1),
|
||||
attn_output,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
max_s,
|
||||
max_s,
|
||||
0.0,
|
||||
|
@ -276,32 +285,19 @@ class FlashMQAttention(torch.nn.Module):
|
|||
)
|
||||
# Decode
|
||||
else:
|
||||
# Add present to the layer_past tensor at the correct indices
|
||||
layer_past[past_present_indices] = key_value
|
||||
# Expand from 1 to num_heads
|
||||
key_value = layer_past.expand(-1, 2, self.num_heads, self.head_size)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
torch.select(key_value, dim=1, index=0),
|
||||
torch.select(key_value, dim=1, index=1),
|
||||
# kv_cache[1] => [num_blocks, 1, head_size, block_size]
|
||||
block_size = kv_cache[1].shape[3]
|
||||
vllm_attention_ops.single_query_cached_kv_attention(
|
||||
attn_output,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq,
|
||||
end_seq,
|
||||
1,
|
||||
max_s,
|
||||
0.0,
|
||||
query,
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
)
|
||||
|
||||
return self.c_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -361,27 +357,25 @@ class Block(nn.Module):
|
|||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
):
|
||||
hidden_states, residual = self.ln_1(hidden_states, residual)
|
||||
|
||||
hidden_states = self.attn(
|
||||
hidden_states,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
layer_past,
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
hidden_states, residual = self.ln_2(hidden_states, residual)
|
||||
|
@ -427,64 +421,38 @@ class FlashSantacoderModel(nn.Module):
|
|||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values=None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
):
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
start_seq_prefill: Optional[torch.Tensor],
|
||||
end_seq_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.wte(input_ids) + self.wpe(position_ids)
|
||||
|
||||
if self.process_group.size() > 1:
|
||||
torch.distributed.all_reduce(hidden_states, group=self.process_group)
|
||||
|
||||
# Prefill
|
||||
if past_key_values is None:
|
||||
assert pre_allocate_past_size is not None
|
||||
|
||||
prefill = True
|
||||
|
||||
# Create past tensor
|
||||
# We create a tensor of the same size as input_ids as we don't want to slice at every layer
|
||||
past_key_values = hidden_states.new_zeros(
|
||||
(len(input_ids), len(self.h), 2, 1, self.head_size)
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
prefill = False
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.h):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
torch.select(past_key_values, dim=1, index=i),
|
||||
past_present_indices,
|
||||
prefill,
|
||||
)
|
||||
|
||||
if prefill:
|
||||
present = past_key_values
|
||||
# Create padded past tensor
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(pre_allocate_past_size, len(self.h), 2, 1, self.head_size)
|
||||
)
|
||||
# We slice only once instead of at every layer
|
||||
past_key_values[past_present_indices] = present
|
||||
|
||||
hidden_states, _ = self.ln_f(hidden_states, residual)
|
||||
|
||||
return hidden_states, past_key_values
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashSantacoderForCausalLM(nn.Module):
|
||||
|
@ -497,31 +465,29 @@ class FlashSantacoderForCausalLM(nn.Module):
|
|||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
start_seq_prefill: Optional[torch.Tensor],
|
||||
end_seq_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
):
|
||||
hidden_states, present = self.transformer(
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.transformer(
|
||||
input_ids,
|
||||
position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
start_seq_q,
|
||||
end_seq_q,
|
||||
start_seq_prefill,
|
||||
end_seq_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
past_present_indices,
|
||||
past_key_values,
|
||||
pre_allocate_past_size,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits = self.lm_head(hidden_states)
|
||||
return logits, present
|
||||
return logits
|
||||
|
|
|
@ -1004,7 +1004,9 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
|
|||
try:
|
||||
self.shared = TensorParallelEmbedding(prefix="shared", weights=weights)
|
||||
except RuntimeError:
|
||||
self.shared = TensorParallelEmbedding(prefix="encoder.embed_tokens", weights=weights)
|
||||
self.shared = TensorParallelEmbedding(
|
||||
prefix="encoder.embed_tokens", weights=weights
|
||||
)
|
||||
|
||||
encoder_config = copy.deepcopy(config)
|
||||
encoder_config.is_decoder = False
|
||||
|
|
|
@ -1,11 +1,14 @@
|
|||
import math
|
||||
import itertools
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
import numpy as np
|
||||
|
||||
from dataclasses import dataclass
|
||||
from loguru import logger
|
||||
from opentelemetry import trace
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedModel
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
from typing import Optional, Tuple, List, Type, Union, Dict
|
||||
|
||||
from text_generation_server.models import Model
|
||||
|
@ -20,6 +23,92 @@ from text_generation_server.utils import StoppingCriteria, HeterogeneousNextToke
|
|||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
BLOCK_SIZE = 16
|
||||
# Will be set in warmup
|
||||
CACHE_MANAGER: Optional["CacheManager"] = None
|
||||
|
||||
|
||||
class CacheManager:
|
||||
def __init__(
|
||||
self,
|
||||
num_blocks: int,
|
||||
num_layers: int,
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
):
|
||||
self.block_size = BLOCK_SIZE
|
||||
|
||||
element_size = torch.tensor([], dtype=dtype).element_size()
|
||||
x = self.block_size // element_size
|
||||
|
||||
self.kv_cache = [
|
||||
(
|
||||
torch.empty(
|
||||
(num_blocks, num_heads, head_size // x, self.block_size, x),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
torch.empty(
|
||||
(num_blocks, num_heads, head_size, self.block_size),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
self.free_block_mask = torch.ones(num_blocks, dtype=torch.int32, device="cpu")
|
||||
self.slots = torch.arange(
|
||||
0, num_blocks * self.block_size, dtype=torch.int32
|
||||
).view(num_blocks, self.block_size)
|
||||
|
||||
def allocate(self, batch: "FlashCausalLMBatch"):
|
||||
# Get free blocks indices by finding values in mask that are not set to 0
|
||||
free_block_indices = self.free_block_mask.nonzero()
|
||||
assert (
|
||||
len(free_block_indices) >= batch.blocks
|
||||
), f"Out of available cache blocks: asked {batch.blocks}, only {len(free_block_indices)} free blocks"
|
||||
|
||||
# Slice by the number of required blocks
|
||||
block_indices = free_block_indices[: batch.blocks]
|
||||
block_indices = block_indices.flatten()
|
||||
|
||||
# Padded block tables
|
||||
block_tables_tensor = torch.zeros(
|
||||
(len(batch), batch.max_blocks), dtype=torch.int32
|
||||
)
|
||||
|
||||
# Allocate paged attention blocks
|
||||
cumulative_blocks = 0
|
||||
slots = []
|
||||
block_tables = []
|
||||
for i, (needed_blocks, needed_slots) in enumerate(batch.needed_blocks_slots):
|
||||
# Get allocated blocks for this sequence
|
||||
allocated_blocks = block_indices[
|
||||
cumulative_blocks : cumulative_blocks + needed_blocks
|
||||
]
|
||||
# Get slots for the allocated blocks
|
||||
allocated_slots = self.slots[allocated_blocks].flatten()[:needed_slots]
|
||||
|
||||
slots.append(allocated_slots)
|
||||
block_tables.append(allocated_blocks.tolist())
|
||||
block_tables_tensor[i, :needed_blocks] = allocated_blocks
|
||||
cumulative_blocks += needed_blocks
|
||||
|
||||
batch.needed_blocks_slots = None
|
||||
batch.block_tables = block_tables
|
||||
batch.block_tables_tensor = block_tables_tensor.to(batch.input_ids.device)
|
||||
batch.slots = torch.concat(slots).to(batch.input_ids.device)
|
||||
|
||||
# Allocate the required number of blocks by setting the mask to 0
|
||||
self.free_block_mask[block_indices] = 0
|
||||
|
||||
def free(self, block_indices: Optional[List[int]]):
|
||||
if block_indices is not None and block_indices:
|
||||
# Reset mask
|
||||
self.free_block_mask[block_indices] = 1
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlashCausalLMBatch(Batch):
|
||||
|
@ -32,23 +121,29 @@ class FlashCausalLMBatch(Batch):
|
|||
input_ids: torch.Tensor
|
||||
position_ids: torch.Tensor
|
||||
|
||||
# Indices to copy present to the correct indices is the pre-allocated past key values
|
||||
past_present_indices: torch.Tensor
|
||||
|
||||
# tensor of length b holding starting offset of each sequence
|
||||
start_seq: torch.Tensor
|
||||
# tensor of length b holding ending offset of each sequence
|
||||
end_seq: torch.Tensor
|
||||
# tensor of length b holding starting offset of each sequence, only used in prefill
|
||||
start_seq_prefill: Optional[torch.Tensor]
|
||||
# tensor of length b holding ending offset of each sequence, only used in prefill
|
||||
end_seq_prefill: Optional[torch.Tensor]
|
||||
# tensor of length b holding starting offset of each query sequence, only used in decode
|
||||
start_seq_q: Optional[torch.Tensor]
|
||||
# tensor of length b holding ending offset of each query sequence, only used in decode
|
||||
end_seq_q: Optional[torch.Tensor]
|
||||
# past key values, only used in decode
|
||||
past_key_values: Optional[torch.Tensor]
|
||||
|
||||
# Paged Attention values
|
||||
|
||||
# Set when creating the batch
|
||||
# CPU tensor of length b indicating the start of each sequence in slots
|
||||
start_slots: torch.Tensor
|
||||
# tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode
|
||||
slot_indices: torch.Tensor
|
||||
# List of tuple of ints representing the number of blocks and slots needed by each sequence
|
||||
needed_blocks_slots: Optional[List[Tuple[int, int]]]
|
||||
|
||||
# Set in prefill by the CacheManager
|
||||
# list of length b of list of length s_i // block_size
|
||||
block_tables: Optional[List[List[int]]]
|
||||
# tensor of size [b, max_seqlen // block_size] holding the paged attention block tables for all sequences
|
||||
block_tables_tensor: Optional[torch.Tensor]
|
||||
# tensor of length \sum_{i=0}^{b} max_s_i holding the paged attention slots for all sequences
|
||||
slots: Optional[torch.Tensor]
|
||||
|
||||
max_seqlen: int
|
||||
|
||||
# Prefill metadata tensors to efficiently compute logprobs
|
||||
|
@ -62,6 +157,7 @@ class FlashCausalLMBatch(Batch):
|
|||
|
||||
# Lengths of all generations present in the batch
|
||||
input_lengths: List[int]
|
||||
input_lengths_tensor: torch.Tensor
|
||||
prefix_offsets: List[Optional[int]]
|
||||
read_offsets: List[Optional[int]]
|
||||
|
||||
|
@ -69,15 +165,17 @@ class FlashCausalLMBatch(Batch):
|
|||
next_token_chooser: HeterogeneousNextTokenChooser
|
||||
stopping_criterias: List[StoppingCriteria]
|
||||
|
||||
# Maximum number of tokens this batch will grow to
|
||||
max_tokens: int
|
||||
# Number of blocks in this batch
|
||||
blocks: int
|
||||
# Maximum number of blocks
|
||||
max_blocks: int
|
||||
|
||||
def to_pb(self) -> generate_pb2.CachedBatch:
|
||||
return generate_pb2.CachedBatch(
|
||||
id=self.batch_id,
|
||||
request_ids=[r.id for r in self.requests],
|
||||
size=len(self),
|
||||
max_tokens=self.max_tokens,
|
||||
max_tokens=self.blocks * BLOCK_SIZE,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
@ -99,12 +197,11 @@ class FlashCausalLMBatch(Batch):
|
|||
)["input_ids"]
|
||||
|
||||
position_ids = []
|
||||
past_present_indices = []
|
||||
start_seq = []
|
||||
end_seq = []
|
||||
start_seq_prefill = []
|
||||
end_seq_prefill = []
|
||||
max_seqlen = 0
|
||||
needed_blocks_slots = []
|
||||
start_slots = []
|
||||
slot_indices = []
|
||||
|
||||
input_lengths = []
|
||||
prefix_offsets = []
|
||||
|
@ -126,7 +223,10 @@ class FlashCausalLMBatch(Batch):
|
|||
cumulative_max_length = 0
|
||||
prefill_out_cumulative_length = 0
|
||||
|
||||
blocks = 0
|
||||
max_seqlen = 0
|
||||
max_length = 0
|
||||
max_blocks = 0
|
||||
|
||||
# Parse batch
|
||||
for i, (r, tokenized_input) in enumerate(
|
||||
|
@ -138,7 +238,6 @@ class FlashCausalLMBatch(Batch):
|
|||
tokenized_input = tokenized_input[-r.truncate :]
|
||||
|
||||
input_length = len(tokenized_input)
|
||||
max_seqlen = max(max_seqlen, input_length)
|
||||
input_lengths.append(input_length)
|
||||
|
||||
prefix_offsets.append(input_length - 5)
|
||||
|
@ -153,8 +252,6 @@ class FlashCausalLMBatch(Batch):
|
|||
# Add cumulative lengths of all previous inputs
|
||||
start_seq_prefill.append(cumulative_length)
|
||||
end_seq_prefill.append(cumulative_length + input_length)
|
||||
start_seq.append(cumulative_max_length)
|
||||
end_seq.append(cumulative_max_length + input_length)
|
||||
|
||||
next_token_chooser_parameters.append(r.parameters)
|
||||
|
||||
|
@ -164,6 +261,21 @@ class FlashCausalLMBatch(Batch):
|
|||
max_new_tokens = stopping_criteria.max_new_tokens
|
||||
stopping_criterias.append(stopping_criteria)
|
||||
|
||||
# Paged attention
|
||||
# Remove one as the first token des not have a past
|
||||
total_tokens = input_length + max_new_tokens - 1
|
||||
needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
|
||||
blocks += needed_blocks
|
||||
needed_blocks_slots.append((needed_blocks, total_tokens))
|
||||
start_slots.append(cumulative_max_length)
|
||||
|
||||
request_slot_indices = torch.arange(
|
||||
cumulative_max_length,
|
||||
cumulative_max_length + input_length,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
slot_indices.append(request_slot_indices)
|
||||
|
||||
all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
|
||||
no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs
|
||||
|
||||
|
@ -184,22 +296,17 @@ class FlashCausalLMBatch(Batch):
|
|||
prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
|
||||
prefill_out_cumulative_length += 1
|
||||
|
||||
request_past_present_indices = torch.arange(
|
||||
cumulative_max_length,
|
||||
cumulative_max_length + input_length,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
past_present_indices.append(request_past_present_indices)
|
||||
|
||||
# Update
|
||||
# Remove one as the first token des not have a past
|
||||
cumulative_length += input_length
|
||||
cumulative_max_length += input_length + max_new_tokens - 1
|
||||
cumulative_max_length += total_tokens
|
||||
max_seqlen = max(max_seqlen, input_length)
|
||||
max_blocks = max(max_blocks, needed_blocks)
|
||||
max_length = max(max_length, input_length + max_new_tokens)
|
||||
|
||||
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
|
||||
next_token_chooser_parameters, dtype, device
|
||||
)
|
||||
start_slots = torch.tensor(start_slots, dtype=torch.int64)
|
||||
|
||||
# Padded all_input_ids_tensor
|
||||
all_input_ids_tensor = np.zeros(
|
||||
|
@ -212,34 +319,28 @@ class FlashCausalLMBatch(Batch):
|
|||
all_input_ids_tensor = torch.tensor(
|
||||
all_input_ids_tensor, dtype=torch.int64, device=device
|
||||
)
|
||||
start_seq = torch.tensor(start_seq, device=device, dtype=torch.int32)
|
||||
end_seq = torch.tensor(end_seq, device=device, dtype=torch.int32)
|
||||
|
||||
if len(pb.requests) > 1:
|
||||
input_ids = np.concatenate(all_input_ids, dtype=np.int64)
|
||||
position_ids = torch.cat(position_ids)
|
||||
|
||||
past_present_indices = np.concatenate(past_present_indices, dtype=np.int64)
|
||||
|
||||
start_seq_prefill = torch.tensor(
|
||||
start_seq_prefill, device=device, dtype=torch.int32
|
||||
)
|
||||
end_seq_prefill = torch.tensor(
|
||||
end_seq_prefill, device=device, dtype=torch.int32
|
||||
)
|
||||
slot_indices = torch.cat(slot_indices)
|
||||
else:
|
||||
input_ids = all_input_ids[0]
|
||||
position_ids = position_ids[0]
|
||||
slot_indices = slot_indices[0]
|
||||
|
||||
past_present_indices = past_present_indices[0]
|
||||
|
||||
start_seq_prefill = start_seq
|
||||
end_seq_prefill = end_seq
|
||||
start_seq_prefill = torch.tensor(
|
||||
start_seq_prefill, device=device, dtype=torch.int32
|
||||
)
|
||||
end_seq_prefill = torch.tensor(
|
||||
end_seq_prefill, device=device, dtype=torch.int32
|
||||
)
|
||||
|
||||
position_ids = position_ids.to(device)
|
||||
slot_indices = slot_indices.to(device)
|
||||
input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
|
||||
position_ids = torch.tensor(position_ids, dtype=torch.int32, device=device)
|
||||
past_present_indices = torch.tensor(
|
||||
past_present_indices, device=device, dtype=torch.int64
|
||||
input_lengths_tensor = torch.tensor(
|
||||
input_lengths, dtype=torch.int32, device=device
|
||||
)
|
||||
|
||||
if all_prefill_logprobs:
|
||||
|
@ -262,26 +363,28 @@ class FlashCausalLMBatch(Batch):
|
|||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
past_present_indices=past_present_indices,
|
||||
start_seq=start_seq,
|
||||
end_seq=end_seq,
|
||||
start_seq_prefill=start_seq_prefill,
|
||||
end_seq_prefill=end_seq_prefill,
|
||||
start_seq_q=None,
|
||||
end_seq_q=None,
|
||||
start_slots=start_slots,
|
||||
slot_indices=slot_indices,
|
||||
needed_blocks_slots=needed_blocks_slots,
|
||||
block_tables=None,
|
||||
block_tables_tensor=None,
|
||||
slots=None,
|
||||
max_seqlen=max_seqlen,
|
||||
prefill_head_indices=prefill_head_indices,
|
||||
prefill_next_token_indices=prefill_next_token_indices,
|
||||
prefill_cu_outlens=prefill_cu_outlens,
|
||||
past_key_values=None,
|
||||
input_lengths=input_lengths,
|
||||
input_lengths_tensor=input_lengths_tensor,
|
||||
prefix_offsets=prefix_offsets,
|
||||
read_offsets=read_offsets,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
next_token_chooser=next_token_chooser,
|
||||
stopping_criterias=stopping_criterias,
|
||||
max_tokens=cumulative_max_length,
|
||||
blocks=blocks,
|
||||
max_blocks=max_blocks,
|
||||
)
|
||||
|
||||
@tracer.start_as_current_span("filter")
|
||||
|
@ -294,28 +397,24 @@ class FlashCausalLMBatch(Batch):
|
|||
|
||||
device = self.input_ids.device
|
||||
|
||||
# Cumulative length
|
||||
cumulative_max_length = 0
|
||||
|
||||
# New values after filtering
|
||||
requests_idx_mapping = {}
|
||||
|
||||
# Used to index into tensors
|
||||
indices = []
|
||||
|
||||
# past indices to keep
|
||||
past_indices = torch.zeros(
|
||||
self.past_key_values.shape[0], dtype=torch.bool, device=device
|
||||
# slots to keep after filtering
|
||||
slot_filtering_indices = torch.zeros(
|
||||
self.slots.shape[0], dtype=torch.bool, device=device
|
||||
)
|
||||
|
||||
# Create on CPU to only move to GPU once instead of at every copy
|
||||
start_seq = torch.empty(len(request_ids), dtype=torch.int32)
|
||||
end_seq = torch.empty(len(request_ids), dtype=torch.int32)
|
||||
start_seq_q = self.start_seq_q[: len(request_ids)]
|
||||
end_seq_q = self.end_seq_q[: len(request_ids)]
|
||||
slot_indices = torch.empty(len(request_ids), dtype=torch.int64)
|
||||
max_seqlen = 0
|
||||
|
||||
requests = []
|
||||
start_slots = []
|
||||
block_tables = []
|
||||
all_input_ids = []
|
||||
|
||||
input_lengths = []
|
||||
|
@ -324,6 +423,11 @@ class FlashCausalLMBatch(Batch):
|
|||
|
||||
stopping_criterias = []
|
||||
|
||||
blocks = 0
|
||||
max_blocks = 0
|
||||
# Cumulative length
|
||||
cumulative_max_length = 0
|
||||
|
||||
for i, request_id in enumerate(request_ids):
|
||||
idx = self.requests_idx_mapping[request_id]
|
||||
indices.append(idx)
|
||||
|
@ -348,28 +452,51 @@ class FlashCausalLMBatch(Batch):
|
|||
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
|
||||
)
|
||||
|
||||
request_block_table = self.block_tables[idx]
|
||||
blocks += len(request_block_table)
|
||||
block_tables.append(request_block_table)
|
||||
start_slots.append(cumulative_max_length)
|
||||
|
||||
# Copy to tensor (CPU)
|
||||
start_seq[i] = cumulative_max_length
|
||||
end_seq[i] = cumulative_max_length + request_input_length
|
||||
slot_indices[i] = cumulative_max_length + request_input_length - 1
|
||||
|
||||
# Set slice
|
||||
past_indices[
|
||||
self.start_seq[idx] : self.end_seq[idx] + remaining_tokens - 1
|
||||
slot_filtering_indices[
|
||||
self.start_slots[idx] : self.start_slots[idx]
|
||||
+ request_input_length
|
||||
+ remaining_tokens
|
||||
- 1
|
||||
] = True
|
||||
|
||||
cumulative_max_length += request_input_length + remaining_tokens - 1
|
||||
|
||||
max_blocks = max(max_blocks, len(request_block_table))
|
||||
|
||||
global CACHE_MANAGER
|
||||
block_indices_to_free = []
|
||||
# Iterate on all requests
|
||||
for i, r in enumerate(self.requests):
|
||||
# Filter requests that are not part of the new batch
|
||||
if r.id not in requests_idx_mapping.keys():
|
||||
block_indices_to_free.extend(self.block_tables[i])
|
||||
# Free blocks
|
||||
CACHE_MANAGER.free(block_indices_to_free)
|
||||
# Needed to avoid dropping blocks when the batches will go out of scope
|
||||
self.block_tables = None
|
||||
|
||||
# Index into tensors
|
||||
input_ids = self.input_ids[indices]
|
||||
position_ids = self.position_ids[indices]
|
||||
all_input_ids_tensor = self.all_input_ids_tensor[indices]
|
||||
block_tables_tensor = self.block_tables_tensor[indices]
|
||||
input_lengths_tensor = self.input_lengths_tensor[indices]
|
||||
slots = self.slots[slot_filtering_indices]
|
||||
next_token_chooser = self.next_token_chooser.filter(indices)
|
||||
past_key_values = self.past_key_values[past_indices]
|
||||
|
||||
start_slots = torch.tensor(start_slots, dtype=torch.int64)
|
||||
|
||||
# Move to GPU now that we have the whole tensor
|
||||
start_seq = start_seq.to(device)
|
||||
end_seq = end_seq.to(device)
|
||||
past_present_indices = end_seq - 1
|
||||
slot_indices = slot_indices.to(device)
|
||||
|
||||
return FlashCausalLMBatch(
|
||||
batch_id=self.batch_id,
|
||||
|
@ -377,26 +504,28 @@ class FlashCausalLMBatch(Batch):
|
|||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
past_present_indices=past_present_indices,
|
||||
start_seq=start_seq,
|
||||
end_seq=end_seq,
|
||||
start_seq_prefill=None,
|
||||
end_seq_prefill=None,
|
||||
start_seq_q=start_seq_q,
|
||||
end_seq_q=end_seq_q,
|
||||
start_slots=start_slots,
|
||||
slot_indices=slot_indices,
|
||||
needed_blocks_slots=None,
|
||||
block_tables=block_tables,
|
||||
block_tables_tensor=block_tables_tensor,
|
||||
slots=slots,
|
||||
max_seqlen=max_seqlen,
|
||||
prefill_head_indices=None,
|
||||
prefill_next_token_indices=None,
|
||||
prefill_cu_outlens=None,
|
||||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
input_lengths_tensor=input_lengths_tensor,
|
||||
prefix_offsets=prefix_offsets,
|
||||
read_offsets=read_offsets,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
next_token_chooser=next_token_chooser,
|
||||
stopping_criterias=stopping_criterias,
|
||||
max_tokens=cumulative_max_length,
|
||||
blocks=blocks,
|
||||
max_blocks=max_blocks,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
@ -406,22 +535,46 @@ class FlashCausalLMBatch(Batch):
|
|||
requests = []
|
||||
requests_idx_mapping = {}
|
||||
|
||||
total_batch_size = sum([len(b) for b in batches])
|
||||
|
||||
dtype = batches[0].past_key_values.dtype
|
||||
device = batches[0].input_ids.device
|
||||
blocks = 0
|
||||
total_batch_size = 0
|
||||
total_slots = 0
|
||||
max_blocks = 0
|
||||
max_length = 0
|
||||
max_seqlen = 0
|
||||
for b in batches:
|
||||
total_batch_size += len(b)
|
||||
total_slots += len(b.slots)
|
||||
blocks += b.blocks
|
||||
max_blocks = max(max_blocks, b.max_blocks)
|
||||
max_seqlen = max(max_seqlen, b.max_seqlen)
|
||||
max_length = max(
|
||||
max_length,
|
||||
max(
|
||||
input_length
|
||||
+ stopping_criteria.max_new_tokens
|
||||
- stopping_criteria.current_tokens
|
||||
for input_length, stopping_criteria in zip(
|
||||
b.input_lengths, b.stopping_criterias
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
input_ids = batches[0].input_ids.new_empty(total_batch_size)
|
||||
position_ids = batches[0].position_ids.new_empty(total_batch_size)
|
||||
start_seq = batches[0].start_seq.new_empty(total_batch_size)
|
||||
end_seq = batches[0].end_seq.new_empty(total_batch_size)
|
||||
start_seq_q = torch.arange(
|
||||
0, total_batch_size, device=device, dtype=torch.int32
|
||||
slots = batches[0].slots.new_empty(total_slots)
|
||||
slot_indices = batches[0].slot_indices.new_empty(total_batch_size)
|
||||
input_lengths_tensor = batches[0].input_lengths_tensor.new_empty(
|
||||
total_batch_size
|
||||
)
|
||||
block_tables_tensor = batches[0].block_tables_tensor.new_zeros(
|
||||
(total_batch_size, max_blocks)
|
||||
)
|
||||
all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros(
|
||||
(total_batch_size, max_length)
|
||||
)
|
||||
end_seq_q = start_seq_q + 1
|
||||
max_seqlen = 0
|
||||
past_key_values = []
|
||||
|
||||
start_slots = []
|
||||
block_tables = []
|
||||
all_input_ids = []
|
||||
|
||||
input_lengths = []
|
||||
|
@ -433,8 +586,7 @@ class FlashCausalLMBatch(Batch):
|
|||
|
||||
# Cumulative length
|
||||
cumulative_batch_size = 0
|
||||
max_tokens = 0
|
||||
max_length = 0
|
||||
cumulative_slots = 0
|
||||
|
||||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
|
@ -448,16 +600,27 @@ class FlashCausalLMBatch(Batch):
|
|||
|
||||
start_index = cumulative_batch_size
|
||||
end_index = cumulative_batch_size + len(batch)
|
||||
slots_start_index = cumulative_slots
|
||||
slots_end_index = cumulative_slots + len(batch.slots)
|
||||
|
||||
# Copy tensors (GPU)
|
||||
input_ids[start_index:end_index] = batch.input_ids
|
||||
position_ids[start_index:end_index] = batch.position_ids
|
||||
slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots
|
||||
input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor
|
||||
slots[slots_start_index:slots_end_index] = batch.slots
|
||||
|
||||
start_seq[start_index:end_index] = batch.start_seq + max_tokens
|
||||
end_seq[start_index:end_index] = batch.end_seq + max_tokens
|
||||
all_input_ids_tensor[
|
||||
start_index:end_index, : batch.all_input_ids_tensor.shape[1]
|
||||
] = batch.all_input_ids_tensor[:, :max_length]
|
||||
|
||||
max_seqlen = max(max_seqlen, batch.max_seqlen)
|
||||
block_tables_tensor[
|
||||
start_index:end_index, : batch.block_tables_tensor.shape[1]
|
||||
] = batch.block_tables_tensor[:, :max_blocks]
|
||||
|
||||
start_slots.append(batch.start_slots + cumulative_slots)
|
||||
|
||||
block_tables.extend(batch.block_tables)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
|
@ -466,73 +629,59 @@ class FlashCausalLMBatch(Batch):
|
|||
|
||||
next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
past_key_values.append(batch.past_key_values)
|
||||
|
||||
# Update
|
||||
cumulative_batch_size += len(batch)
|
||||
max_tokens += batch.max_tokens
|
||||
max_length = max(
|
||||
max_length,
|
||||
max(
|
||||
input_length
|
||||
+ stopping_criteria.max_new_tokens
|
||||
- stopping_criteria.current_tokens
|
||||
for input_length, stopping_criteria in zip(
|
||||
batch.input_lengths, batch.stopping_criterias
|
||||
)
|
||||
),
|
||||
)
|
||||
cumulative_slots += len(batch.slots)
|
||||
|
||||
past_key_values = torch.cat(past_key_values, dim=0)
|
||||
past_present_indices = end_seq - 1
|
||||
|
||||
all_input_ids_tensor = torch.zeros(
|
||||
(total_batch_size, max_length), dtype=torch.int64, device=device
|
||||
)
|
||||
|
||||
cumulative_batch_size = 0
|
||||
for i, batch in enumerate(batches):
|
||||
start_index = cumulative_batch_size
|
||||
end_index = cumulative_batch_size + len(batch)
|
||||
|
||||
all_input_ids_tensor[
|
||||
start_index:end_index, : batch.all_input_ids_tensor.shape[1]
|
||||
] = batch.all_input_ids_tensor[:, :max_length]
|
||||
|
||||
cumulative_batch_size += len(batch)
|
||||
start_slots = torch.concat(start_slots)
|
||||
|
||||
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
|
||||
next_token_chooser_parameters, dtype=dtype, device=device
|
||||
next_token_chooser_parameters,
|
||||
dtype=batches[0].next_token_chooser.dtype,
|
||||
device=batches[0].next_token_chooser.device,
|
||||
)
|
||||
|
||||
# Needed to avoid dropping blocks when the batches will go out of scope
|
||||
for b in batches:
|
||||
b.block_tables = None
|
||||
|
||||
return FlashCausalLMBatch(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
past_present_indices=past_present_indices,
|
||||
start_seq=start_seq,
|
||||
end_seq=end_seq,
|
||||
start_seq_prefill=None,
|
||||
end_seq_prefill=None,
|
||||
start_seq_q=start_seq_q,
|
||||
end_seq_q=end_seq_q,
|
||||
start_slots=start_slots,
|
||||
slot_indices=slot_indices,
|
||||
needed_blocks_slots=None,
|
||||
block_tables=block_tables,
|
||||
block_tables_tensor=block_tables_tensor,
|
||||
slots=slots,
|
||||
max_seqlen=max_seqlen,
|
||||
prefill_head_indices=None,
|
||||
prefill_next_token_indices=None,
|
||||
prefill_cu_outlens=None,
|
||||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
input_lengths_tensor=input_lengths_tensor,
|
||||
prefix_offsets=prefix_offsets,
|
||||
read_offsets=read_offsets,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
next_token_chooser=next_token_chooser,
|
||||
stopping_criterias=stopping_criterias,
|
||||
max_tokens=max_tokens,
|
||||
blocks=blocks,
|
||||
max_blocks=max_blocks,
|
||||
)
|
||||
|
||||
def __del__(self):
|
||||
if self.block_tables is not None and self.block_tables:
|
||||
global CACHE_MANAGER
|
||||
# Free blocks
|
||||
CACHE_MANAGER.free(list(itertools.chain.from_iterable(self.block_tables)))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.requests)
|
||||
|
||||
|
@ -540,32 +689,19 @@ class FlashCausalLMBatch(Batch):
|
|||
class FlashCausalLM(Model):
|
||||
def __init__(
|
||||
self,
|
||||
model_cls: Type[PreTrainedModel],
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
trust_remote_code: bool = False,
|
||||
model: torch.nn.Module,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
num_layers: int,
|
||||
num_kv_heads: int,
|
||||
head_size: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
rank: int = 0,
|
||||
world_size: int = 1,
|
||||
):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashCausalLM is only available on GPU")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
model = model_cls.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
load_in_8bit=quantize == "bitsandbytes",
|
||||
trust_remote_code=trust_remote_code,
|
||||
).to(device)
|
||||
self.num_layers = num_layers
|
||||
self.num_kv_heads = num_kv_heads
|
||||
self.head_size = head_size
|
||||
|
||||
super(FlashCausalLM, self).__init__(
|
||||
model=model,
|
||||
|
@ -573,12 +709,38 @@ class FlashCausalLM(Model):
|
|||
requires_padding=False,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[FlashCausalLMBatch]:
|
||||
return FlashCausalLMBatch
|
||||
|
||||
def warmup(self, batch: FlashCausalLMBatch, max_total_tokens: int):
|
||||
global CACHE_MANAGER
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
try:
|
||||
CACHE_MANAGER = CacheManager(
|
||||
# Adds some wiggle room
|
||||
math.ceil(max_total_tokens / BLOCK_SIZE) + 10,
|
||||
self.num_layers,
|
||||
self.num_kv_heads,
|
||||
self.head_size,
|
||||
self.dtype,
|
||||
self.device,
|
||||
)
|
||||
_, batch = self.generate_token(batch)
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
f"Not enough memory to handle {max_total_tokens} total tokens with {len(batch.input_ids)} "
|
||||
f"prefill tokens. "
|
||||
f"You need to decrease `--max-batch-total-tokens` or `--max-batch-prefill-tokens`"
|
||||
)
|
||||
raise e
|
||||
del batch
|
||||
|
||||
def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
|
||||
return self.tokenizer.decode(
|
||||
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
|
@ -588,28 +750,27 @@ class FlashCausalLM(Model):
|
|||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
start_seq: torch.Tensor,
|
||||
end_seq: torch.Tensor,
|
||||
start_seq_q: Optional[torch.Tensor],
|
||||
end_seq_q: Optional[torch.Tensor],
|
||||
start_seq_prefill: Optional[torch.Tensor],
|
||||
end_seq_prefill: Optional[torch.Tensor],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
past_present_indices: torch.Tensor,
|
||||
past_key_values: Optional = None,
|
||||
pre_allocate_past_size: Optional[int] = None,
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
global CACHE_MANAGER
|
||||
|
||||
# Model Forward
|
||||
return self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
start_seq=start_seq,
|
||||
end_seq=end_seq,
|
||||
start_seq_q=start_seq_q,
|
||||
end_seq_q=end_seq_q,
|
||||
start_seq_prefill=start_seq_prefill,
|
||||
end_seq_prefill=end_seq_prefill,
|
||||
kv_cache=CACHE_MANAGER.kv_cache,
|
||||
block_tables=block_tables,
|
||||
slots=slots,
|
||||
input_lengths=input_lengths,
|
||||
max_s=max_s,
|
||||
past_present_indices=past_present_indices,
|
||||
past_key_values=past_key_values,
|
||||
pre_allocate_past_size=pre_allocate_past_size,
|
||||
lm_head_indices=lm_head_indices,
|
||||
)
|
||||
|
||||
|
@ -617,31 +778,22 @@ class FlashCausalLM(Model):
|
|||
def generate_token(
|
||||
self, batch: FlashCausalLMBatch
|
||||
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
|
||||
prefill = batch.past_key_values is None
|
||||
prefill = batch.start_seq_prefill is not None
|
||||
prefill_logprobs = batch.prefill_next_token_indices is not None
|
||||
|
||||
if prefill:
|
||||
# Ask to pre-allocate kv to its max size
|
||||
# == Sum over batch size (number of tokens + max_new_tokens) - batch size
|
||||
pre_allocate_past_size = batch.max_tokens
|
||||
start_seq = batch.start_seq_prefill
|
||||
end_seq = batch.end_seq_prefill
|
||||
else:
|
||||
pre_allocate_past_size = None
|
||||
start_seq = batch.start_seq
|
||||
end_seq = batch.end_seq
|
||||
if batch.needed_blocks_slots:
|
||||
# Allocate blocks to this batch
|
||||
CACHE_MANAGER.allocate(batch)
|
||||
|
||||
out, present = self.forward(
|
||||
out = self.forward(
|
||||
batch.input_ids,
|
||||
batch.position_ids,
|
||||
start_seq,
|
||||
end_seq,
|
||||
batch.start_seq_q,
|
||||
batch.end_seq_q,
|
||||
batch.start_seq_prefill,
|
||||
batch.end_seq_prefill,
|
||||
batch.block_tables_tensor,
|
||||
batch.slots[batch.slot_indices],
|
||||
batch.input_lengths_tensor,
|
||||
batch.max_seqlen,
|
||||
batch.past_present_indices,
|
||||
batch.past_key_values,
|
||||
pre_allocate_past_size,
|
||||
batch.prefill_head_indices,
|
||||
)
|
||||
|
||||
|
@ -662,12 +814,8 @@ class FlashCausalLM(Model):
|
|||
# When batch == 1, we will just use the batch.input_ids values directly
|
||||
prefill_tokens_indices = batch.input_ids.new_zeros(len(out))
|
||||
|
||||
# Create batch.start_seq_q and batch.end_seq_q for decode
|
||||
batch.start_seq_q = torch.arange(
|
||||
0, len(batch), device=self.device, dtype=torch.int32
|
||||
)
|
||||
batch.end_seq_q = batch.start_seq_q + 1
|
||||
next_position_ids = batch.position_ids.new_empty(len(batch))
|
||||
batch.slot_indices = batch.slot_indices[batch.end_seq_prefill - 1]
|
||||
# We do not need start_seq_prefill and end_seq_prefill anymore
|
||||
batch.start_seq_prefill = None
|
||||
batch.end_seq_prefill = None
|
||||
|
@ -731,8 +879,8 @@ class FlashCausalLM(Model):
|
|||
# Set values in batch
|
||||
batch.input_ids = next_input_ids
|
||||
batch.position_ids = next_position_ids + 1
|
||||
batch.past_present_indices = batch.end_seq
|
||||
batch.end_seq = batch.end_seq + 1
|
||||
batch.input_lengths_tensor += 1
|
||||
batch.slot_indices += 1
|
||||
|
||||
if prefill and prefill_logprobs:
|
||||
# Get prefill logprobs
|
||||
|
@ -755,7 +903,6 @@ class FlashCausalLM(Model):
|
|||
batch.read_offsets,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
batch.all_input_ids_tensor,
|
||||
batch.next_token_chooser.do_sample,
|
||||
batch.next_token_chooser.seeds,
|
||||
next_token_ids,
|
||||
|
@ -770,7 +917,6 @@ class FlashCausalLM(Model):
|
|||
read_offset,
|
||||
stopping_criteria,
|
||||
all_input_ids,
|
||||
all_input_ids_tensor,
|
||||
do_sample,
|
||||
seed,
|
||||
next_token_id,
|
||||
|
@ -845,19 +991,20 @@ class FlashCausalLM(Model):
|
|||
|
||||
generations.append(generation)
|
||||
|
||||
new_input_length = input_length + 1
|
||||
|
||||
# Update values
|
||||
batch.input_lengths[i] = new_input_length
|
||||
batch.input_lengths[i] = input_length + 1
|
||||
batch.prefix_offsets[i] = prefix_offset
|
||||
batch.read_offsets[i] = read_offset
|
||||
batch.all_input_ids[i] = all_input_ids
|
||||
|
||||
if stopped:
|
||||
del batch
|
||||
# No need to return a batch if we know that all requests stopped
|
||||
return generations, None
|
||||
|
||||
batch.prefill_cu_outlens = None
|
||||
batch.prefill_head_indices = None
|
||||
batch.prefill_next_token_indices = None
|
||||
batch.max_seqlen = batch.max_seqlen + 1
|
||||
batch.past_key_values = present
|
||||
|
||||
# No need to return a batch if we know that all requests stopped
|
||||
return generations, batch if not stopped else None
|
||||
return generations, batch
|
||||
|
|
|
@ -64,10 +64,12 @@ class FlashLlama(FlashCausalLM):
|
|||
model = FlashLlamaForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashCausalLM, self).__init__(
|
||||
super(FlashLlama, self).__init__(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
requires_padding=False,
|
||||
num_layers=len(model.model.layers),
|
||||
num_kv_heads=model.model.num_heads,
|
||||
head_size=model.model.head_size,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
rank=rank,
|
||||
|
|
|
@ -55,10 +55,12 @@ class FlashNeoXSharded(FlashCausalLM):
|
|||
model = FlashGPTNeoXForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashCausalLM, self).__init__(
|
||||
super(FlashNeoXSharded, self).__init__(
|
||||
model=model.to(device),
|
||||
tokenizer=tokenizer,
|
||||
requires_padding=False,
|
||||
num_layers=len(model.gpt_neox.layers),
|
||||
num_kv_heads=model.gpt_neox.num_heads,
|
||||
head_size=model.gpt_neox.head_size,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
rank=rank,
|
||||
|
|
|
@ -55,10 +55,12 @@ class FlashRWSharded(FlashCausalLM):
|
|||
model = FlashRWForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashCausalLM, self).__init__(
|
||||
super(FlashRWSharded, self).__init__(
|
||||
model=model.to(device),
|
||||
tokenizer=tokenizer,
|
||||
requires_padding=False,
|
||||
num_layers=len(model.transformer.h),
|
||||
num_kv_heads=model.transformer.cache_size,
|
||||
head_size=model.transformer.head_size,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
rank=rank,
|
||||
|
|
|
@ -52,17 +52,22 @@ class FlashSantacoderSharded(FlashCausalLM):
|
|||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
weights = Weights(
|
||||
filenames, device=device, dtype=dtype, process_group=self.process_group,
|
||||
aliases = {"transformer.wte.weight": ["lm_head.weight"]}
|
||||
filenames,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
process_group=self.process_group,
|
||||
aliases={"transformer.wte.weight": ["lm_head.weight"]},
|
||||
)
|
||||
|
||||
model = FlashSantacoderForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashCausalLM, self).__init__(
|
||||
super(FlashSantacoderSharded, self).__init__(
|
||||
model=model.to(device),
|
||||
tokenizer=tokenizer,
|
||||
requires_padding=False,
|
||||
num_layers=len(model.transformer.h),
|
||||
num_kv_heads=1,
|
||||
head_size=model.transformer.head_size,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
rank=rank,
|
||||
|
|
|
@ -22,6 +22,9 @@ class Model(ABC):
|
|||
rank: int = 0,
|
||||
world_size: int = 1,
|
||||
):
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.set_per_process_memory_fraction(1.0)
|
||||
|
||||
self.model = model.eval()
|
||||
self.tokenizer = tokenizer
|
||||
self.all_special_ids = set(tokenizer.all_special_ids)
|
||||
|
@ -55,6 +58,9 @@ class Model(ABC):
|
|||
def generate_token(self, batch: B) -> Tuple[List[GeneratedText], Optional[B]]:
|
||||
raise NotImplementedError
|
||||
|
||||
def warmup(self, batch: B, max_total_tokens: int):
|
||||
self.generate_token(batch)
|
||||
|
||||
def decode_token(
|
||||
self,
|
||||
all_input_ids: List[int],
|
||||
|
|
|
@ -127,7 +127,7 @@ class Seq2SeqLMBatch(Batch):
|
|||
read_offsets.append(1)
|
||||
all_decoder_input_ids = decoder_input_ids.view(-1).split(1)
|
||||
|
||||
max_tokens = len(inputs) * max_input_length + max_decode_tokens
|
||||
max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
|
|
|
@ -53,6 +53,13 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||
|
||||
return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())
|
||||
|
||||
async def Warmup(self, request, context):
|
||||
batch = self.model.batch_type.from_pb(
|
||||
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
|
||||
)
|
||||
self.model.warmup(batch, request.max_total_tokens)
|
||||
return generate_pb2.WarmupResponse()
|
||||
|
||||
async def Prefill(self, request, context):
|
||||
batch = self.model.batch_type.from_pb(
|
||||
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
|
||||
|
|
|
@ -216,6 +216,8 @@ class HeterogeneousNextTokenChooser:
|
|||
|
||||
self.seeds = seeds
|
||||
self.do_sample = do_sample
|
||||
self.dtype = dtype
|
||||
self.device = device
|
||||
|
||||
def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor):
|
||||
if self.watermark_processor is not None:
|
||||
|
|
|
@ -5,7 +5,14 @@ import torch
|
|||
|
||||
|
||||
class Weights:
|
||||
def __init__(self, filenames: List[Path], device, dtype, process_group, aliases: Optional[Dict[str, List[str]]]=None):
|
||||
def __init__(
|
||||
self,
|
||||
filenames: List[Path],
|
||||
device,
|
||||
dtype,
|
||||
process_group,
|
||||
aliases: Optional[Dict[str, List[str]]] = None,
|
||||
):
|
||||
routing = {}
|
||||
for filename in filenames:
|
||||
with safe_open(filename, framework="pytorch") as f:
|
||||
|
@ -43,7 +50,7 @@ class Weights:
|
|||
return str(filename), tensor_name
|
||||
|
||||
def _get_slice(self, tensor_name: str):
|
||||
filename, tensor_name= self.get_filename(tensor_name)
|
||||
filename, tensor_name = self.get_filename(tensor_name)
|
||||
f = self._get_handle(filename)
|
||||
slice_ = f.get_slice(tensor_name)
|
||||
return slice_
|
||||
|
@ -94,12 +101,20 @@ class Weights:
|
|||
def get_multi_weights_col(self, prefixes: List[str], quantize: str, dim: int):
|
||||
if quantize == "gptq":
|
||||
try:
|
||||
qweight = torch.cat([self.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1)
|
||||
qweight = torch.cat(
|
||||
[self.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError("Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`")
|
||||
raise RuntimeError(
|
||||
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
|
||||
)
|
||||
|
||||
qzeros = torch.cat([self.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1)
|
||||
scales = torch.cat([self.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1)
|
||||
qzeros = torch.cat(
|
||||
[self.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
scales = torch.cat(
|
||||
[self.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
w = [self.get_tensor(f"{p}.g_idx") for p in prefixes]
|
||||
for w2 in w[1:]:
|
||||
torch.testing.assert_close(w2, w[0])
|
||||
|
@ -118,7 +133,9 @@ class Weights:
|
|||
try:
|
||||
qweight = self.get_sharded(f"{prefix}.qweight", dim=0)
|
||||
except RuntimeError:
|
||||
raise RuntimeError("Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`")
|
||||
raise RuntimeError(
|
||||
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
|
||||
)
|
||||
qzeros = self.get_tensor(f"{prefix}.qzeros")
|
||||
scales = self.get_tensor(f"{prefix}.scales")
|
||||
g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
|
||||
|
|
Loading…
Reference in New Issue