Quantization docs (#911)
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
This commit is contained in:
parent
1f69fb9ed4
commit
e9ae678699
|
@ -21,6 +21,8 @@
|
||||||
- sections:
|
- sections:
|
||||||
- local: conceptual/streaming
|
- local: conceptual/streaming
|
||||||
title: Streaming
|
title: Streaming
|
||||||
|
- local: conceptual/quantization
|
||||||
|
title: Quantization
|
||||||
- local: conceptual/tensor_parallelism
|
- local: conceptual/tensor_parallelism
|
||||||
title: Tensor Parallelism
|
title: Tensor Parallelism
|
||||||
- local: conceptual/paged_attention
|
- local: conceptual/paged_attention
|
||||||
|
|
|
@ -4,7 +4,7 @@ Text Generation Inference improves the model in several aspects.
|
||||||
|
|
||||||
## Quantization
|
## Quantization
|
||||||
|
|
||||||
TGI supports [bits-and-bytes](https://github.com/TimDettmers/bitsandbytes#bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323) quantization. To speed up inference with quantization, simply set `quantize` flag to `bitsandbytes` or `gptq` depending on the quantization technique you wish to use. When using GPT-Q quantization, you need to point to one of the models [here](https://huggingface.co/models?search=gptq).
|
TGI supports [bits-and-bytes](https://github.com/TimDettmers/bitsandbytes#bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323) quantization. To speed up inference with quantization, simply set `quantize` flag to `bitsandbytes` or `gptq` depending on the quantization technique you wish to use. When using GPT-Q quantization, you need to point to one of the models [here](https://huggingface.co/models?search=gptq). To get more information about quantization, please refer to (./conceptual/quantization.md)
|
||||||
|
|
||||||
|
|
||||||
## RoPE Scaling
|
## RoPE Scaling
|
||||||
|
|
|
@ -0,0 +1,59 @@
|
||||||
|
# Quantization
|
||||||
|
|
||||||
|
TGI offers GPTQ and bits-and-bytes quantization to quantize large language models.
|
||||||
|
|
||||||
|
## Quantization with GPTQ
|
||||||
|
|
||||||
|
GPTQ is a post-training quantization method to make the model smaller. It quantizes the layers by finding a compressed version of that weight, that will yield a minimum mean squared error like below 👇
|
||||||
|
|
||||||
|
Given a layer \\(l\\) with weight matrix \\(W_{l}\\) and layer input \\(X_{l}\\), find quantized weight \\(\\hat{W}_{l}\\):
|
||||||
|
|
||||||
|
$$({\hat{W}_{l}}^{*} = argmin_{\hat{W_{l}}} ||W_{l}X-\hat{W}_{l}X||^{2}_{2})$$
|
||||||
|
|
||||||
|
|
||||||
|
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --quantize gptq
|
||||||
|
```
|
||||||
|
|
||||||
|
Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.
|
||||||
|
|
||||||
|
To quantize a given model using GPTQ with a calibration dataset, simply run
|
||||||
|
|
||||||
|
```bash
|
||||||
|
text-generation-server quantize tiiuae/falcon-40b /data/falcon-40b-gptq
|
||||||
|
# Add --upload-to-model-id MYUSERNAME/falcon-40b to push the created model to the hub directly
|
||||||
|
```
|
||||||
|
|
||||||
|
This will create a new directory with the quantized files which you can use with,
|
||||||
|
|
||||||
|
```bash
|
||||||
|
text-generation-launcher --model-id /data/falcon-40b-gptq/ --sharded true --num-shard 2 --quantize gptq
|
||||||
|
```
|
||||||
|
|
||||||
|
You can learn more about the quantization options by running `text-generation-server quantize --help`.
|
||||||
|
|
||||||
|
If you wish to do more with GPTQ models (e.g. train an adapter on top), you can read about transformers GPTQ integration [here](https://huggingface.co/blog/gptq-integration).
|
||||||
|
You can learn more about GPTQ from the [paper](https://arxiv.org/pdf/2210.17323.pdf).
|
||||||
|
|
||||||
|
## Quantization with bitsandbytes
|
||||||
|
|
||||||
|
bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models. Unlike GPTQ quantization, bitsandbytes doesn't require a calibration dataset or any post-processing – weights are automatically quantized on load. However, inference with bitsandbytes is slower than GPTQ or FP16 precision.
|
||||||
|
|
||||||
|
8-bit quantization enables multi-billion parameter scale models to fit in smaller hardware without degrading performance too much.
|
||||||
|
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --quantize --bitsandbytes
|
||||||
|
```
|
||||||
|
|
||||||
|
4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.
|
||||||
|
|
||||||
|
In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --quantize --bitsandbytes-nf4
|
||||||
|
```
|
||||||
|
|
||||||
|
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
|
Loading…
Reference in New Issue