TensorRT-LLM backend bump to latest version + misc fixes (#2791)

* misc(cmake) update dependencies

* feat(hardware) enable new hardware.hpp and unittests

* test(ctest) enable address sanitizer

* feat(backend): initial rewrite of the backend for simplicity

* feat(backend): remove all the logs from hardware.hpp

* feat(backend): added some logging

* feat(backend): enable compiler warning if support for RVO not applying

* feat(backend): missing return statement

* feat(backend): introduce backend_workspace_t to store precomputed information from the engine folder

* feat(backend): delete previous backend impl

* feat(backend): more impl

* feat(backend): use latest trtllm main version to have g++ >= 13 compatibility

* feat(backend): allow overriding which Python to use

* feat(backend): fix backend_exception_t -> backend_error_t naming

* feat(backend): impl missing generation_step_t as return value of pull_tokens

* feat(backend): make backend_workspace_t::engines_folder constexpr

* feat(backend): fix main.rs retrieving the tokenizer

* feat(backend): add guard to multiple header definitions

* test(backend): add more unittest

* feat(backend): remove constexpr from par

* feat(backend): remove constexpig

* test(backend): more test coverage

* chore(trtllm): update dependency towards 0.15.0

* effectively cancel the request on the executor

* feat(backend) fix moving backend when pulling

* feat(backend): make sure we can easily cancel request on the executor

* feat(backend): fix missing "0" field access

* misc(backend): fix reborrowing Pin<&mut T> as described in the doc https://doc.rust-lang.org/stable/std/pin/struct.Pin.html#method.as_mut

* chore: Add doc and CI for TRTLLM (#2799)

* chore: Add doc and CI for TRTLLM

* chore: Add doc and CI for TRTLLM

* chore: Add doc and CI for TRTLLM

* chore: Add doc and CI for TRTLLM

* doc: Formatting

* misc(backend): indent

---------

Co-authored-by: Hugo Larcher <hugo.larcher@huggingface.co>
This commit is contained in:
Funtowicz Morgan 2024-12-13 15:50:59 +01:00 committed by GitHub
parent 3bb3fd19ae
commit ea7f4082c4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
32 changed files with 1192 additions and 896 deletions

View File

@ -8,6 +8,7 @@ on:
description: Hardware
# options:
# - cuda
# - cuda-trtllm
# - rocm
# - intel
required: true
@ -52,6 +53,15 @@ jobs:
export platform=""
export extra_pytest=""
;;
cuda-trtllm)
export dockerfile="Dockerfile_trtllm"
export label_extension="-trtllm"
export docker_volume="/mnt/cache"
export docker_devices=""
export runs_on="ubuntu-latest"
export platform=""
export extra_pytest=""
;;
rocm)
export dockerfile="Dockerfile_amd"
export label_extension="-rocm"

View File

@ -37,7 +37,7 @@ jobs:
# fail-fast is true by default
fail-fast: false
matrix:
hardware: ["cuda", "rocm", "intel-xpu", "intel-cpu"]
hardware: ["cuda", "cuda-trtllm", "rocm", "intel-xpu", "intel-cpu"]
uses: ./.github/workflows/build.yaml # calls the one above ^
permissions:
contents: write

55
Cargo.lock generated
View File

@ -2850,20 +2850,6 @@ dependencies = [
"urlencoding",
]
[[package]]
name = "opentelemetry"
version = "0.24.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4c365a63eec4f55b7efeceb724f1336f26a9cf3427b70e59e2cd2a5b947fba96"
dependencies = [
"futures-core",
"futures-sink",
"js-sys",
"once_cell",
"pin-project-lite",
"thiserror",
]
[[package]]
name = "opentelemetry-otlp"
version = "0.13.0"
@ -2963,24 +2949,6 @@ dependencies = [
"thiserror",
]
[[package]]
name = "opentelemetry_sdk"
version = "0.24.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "692eac490ec80f24a17828d49b40b60f5aeaccdfe6a503f939713afd22bc28df"
dependencies = [
"async-trait",
"futures-channel",
"futures-executor",
"futures-util",
"glob",
"once_cell",
"opentelemetry 0.24.0",
"percent-encoding",
"rand",
"thiserror",
]
[[package]]
name = "option-ext"
version = "0.2.0"
@ -4369,7 +4337,6 @@ dependencies = [
name = "text-generation-backends-trtllm"
version = "3.0.2-dev0"
dependencies = [
"async-stream",
"async-trait",
"clap 4.5.21",
"cmake",
@ -4377,16 +4344,14 @@ dependencies = [
"cxx-build",
"hashbrown 0.14.5",
"hf-hub",
"log",
"pkg-config",
"pyo3",
"text-generation-router",
"thiserror",
"tokenizers",
"tokio",
"tokio-stream",
"tracing",
"tracing-opentelemetry 0.25.0",
"tracing-subscriber",
]
[[package]]
@ -5086,24 +5051,6 @@ dependencies = [
"web-time 0.2.4",
]
[[package]]
name = "tracing-opentelemetry"
version = "0.25.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a9784ed4da7d921bc8df6963f8c80a0e4ce34ba6ba76668acadd3edbd985ff3b"
dependencies = [
"js-sys",
"once_cell",
"opentelemetry 0.24.0",
"opentelemetry_sdk 0.24.1",
"smallvec",
"tracing",
"tracing-core",
"tracing-log 0.2.0",
"tracing-subscriber",
"web-time 1.1.0",
]
[[package]]
name = "tracing-opentelemetry-instrumentation-sdk"
version = "0.16.0"

View File

@ -1,5 +1,5 @@
ARG CUDA_ARCH_LIST="75-real;80-real;86-real;89-real;90-real"
ARG OMPI_VERSION="4.1.6"
ARG OMPI_VERSION="4.1.7rc1"
# Build dependencies resolver stage
FROM lukemathwalker/cargo-chef:latest AS chef
@ -10,7 +10,7 @@ COPY . .
RUN cargo chef prepare --recipe-path recipe.json
# CUDA dependent dependencies resolver stage
FROM nvidia/cuda:12.6.1-cudnn-devel-ubuntu22.04 AS cuda-builder
FROM nvidia/cuda:12.6.3-cudnn-devel-ubuntu24.04 AS cuda-builder
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
@ -18,18 +18,21 @@ RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
build-essential \
cmake \
curl \
gcc \
g++ \
gcc-14 \
g++-14 \
git \
git-lfs \
libssl-dev \
libucx-dev \
ninja-build \
pkg-config \
pipx \
python3 \
python3-dev \
python3-setuptools \
tar \
wget
wget && \
pipx ensurepath
ENV TGI_INSTALL_PREFIX=/usr/local/tgi
ENV TENSORRT_INSTALL_PREFIX=/usr/local/tensorrt
@ -83,13 +86,15 @@ RUN mkdir $TGI_INSTALL_PREFIX && mkdir "$TGI_INSTALL_PREFIX/include" && mkdir "$
cd backends/trtllm && \
CMAKE_INSTALL_PREFIX=$TGI_INSTALL_PREFIX cargo build --release
FROM nvidia/cuda:12.6.1-cudnn-runtime-ubuntu22.04 AS runtime
RUN apt update && apt install -y python3-minimal python3-dev python3-pip && \
FROM nvidia/cuda:12.6.3-cudnn-runtime-ubuntu24.04 AS runtime
RUN apt update && apt install -y libucx0 pipx python3-minimal python3-dev python3-pip python3-venv && \
rm -rf /var/lib/{apt,dpkg,cache,log}/ && \
python3 -m pip install transformers tokenizers
pipx ensurepath && \
pipx install --include-deps transformers tokenizers
WORKDIR /usr/local/tgi/bin
ENV PATH=/root/.local/share/pipx/venvs/transformers/bin/:$PATH
ENV LD_LIBRARY_PATH="/usr/local/tgi/lib:/usr/local/mpi/lib:/usr/local/tensorrt/lib:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
ENV TOKENIZERS_PARALLELISM=false
ENV OMPI_MCA_plm_rsh_agent=""

View File

@ -13,10 +13,11 @@ if (CMAKE_VERSION VERSION_GREATER_EQUAL "3.24.0")
endif ()
project(tgi-trtllm-backend VERSION 1.0.0)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD 23)
include(FetchContent)
include(ExternalProject)
include(CheckCXXCompilerFlag)
option(TGI_TRTLLM_BACKEND_BUILD_TESTS "Enable building the unittests suite" OFF)
option(TGI_TRTLLM_BACKEND_BUILD_EXAMPLES "Enable building the examples suite" OFF)
@ -29,11 +30,20 @@ set(TGI_TRTLLM_BACKEND_TRT_LIB_DIR "${TGI_TRTLLM_BACKEND_TRT_ROOT}/lib" CACHE ST
find_package(CUDAToolkit 12.6 REQUIRED COMPONENTS CUDA::cudart CUDA::nvml)
#### External dependencies ####
include(cmake/fmt.cmake)
include(cmake/json.cmake)
include(cmake/spdlog.cmake)
include(cmake/trtllm.cmake)
if(${CMAKE_BUILD_TYPE} STREQUAL "Debug")
add_compile_definitions(TGI_TRTLLM_BACKEND_DEBUG=1)
endif()
# This attempt to detect if the compiler can emit warning if it can't apply return value optimization from a function
check_cxx_compiler_flag("-Wnrvo" COMPILER_SUPPORT_WARNING_ON_NVRO)
if(${COMPILER_SUPPORT_WARNING_ON_NVRO})
set(CMAKE_CXX_FLAGS "{CMAKE_CXX_FLAGS} -Wnvro")
endif()
# Let's build TRTLLM as part of CMake
add_subdirectory("${trtllm_SOURCE_DIR}/cpp" "${trtllm_SOURCE_DIR}/..")
@ -41,15 +51,21 @@ add_subdirectory("${trtllm_SOURCE_DIR}/cpp" "${trtllm_SOURCE_DIR}/..")
set_target_properties(executorWorker PROPERTIES SKIP_BUILD_RPATH TRUE)
# TGI TRTLLM Backend definition
add_library(tgi_trtllm_backend_impl STATIC include/backend.h lib/backend.cpp include/hardware.h)
add_library(tgi_trtllm_backend_impl STATIC csrc/hardware.hpp csrc/backend.hpp csrc/backend.cpp)
include_directories(${TGI_TRTLLM_BACKEND_TRT_INCLUDE_DIR})
target_include_directories(tgi_trtllm_backend_impl PRIVATE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/csrc>
# $<INSTALL_INTERFACE:csrc>
)
target_include_directories(tgi_trtllm_backend_impl PUBLIC "${trtllm_SOURCE_DIR}/cpp/include")
target_link_libraries(tgi_trtllm_backend_impl PRIVATE tensorrt_llm nvinfer_plugin_tensorrt_llm tensorrt_llm_nvrtc_wrapper CUDA::cudart CUDA::nvml)
target_link_libraries(tgi_trtllm_backend_impl PUBLIC nlohmann_json::nlohmann_json spdlog::spdlog fmt::fmt)
target_link_libraries(tgi_trtllm_backend_impl PRIVATE CUDA::cudart CUDA::nvml)
target_link_libraries(tgi_trtllm_backend_impl PUBLIC nlohmann_json::nlohmann_json spdlog::spdlog)
if(${CMAKE_BUILD_TYPE} STREQUAL "Debug")
target_link_libraries(tgi_trtllm_backend_impl PRIVATE tensorrt_llm nvinfer_plugin_tensorrt_llm)
else()
target_link_libraries(tgi_trtllm_backend_impl PRIVATE tensorrt_llm nvinfer_plugin_tensorrt_llm tensorrt_llm_nvrtc_wrapperm)
endif ()
# This install all the artifacts in CMAKE_INSTALL_PREFIX under include/ lib/ bin/ to make easy to link / find it back
install(TARGETS tgi_trtllm_backend_impl tensorrt_llm nvinfer_plugin_tensorrt_llm decoder_attention executorWorker)
@ -60,16 +76,30 @@ if (${TGI_TRTLLM_BACKEND_BUILD_TESTS})
message(STATUS "Building tests")
FetchContent_Declare(
Catch2
GIT_REPOSITORY https://github.com/catchorg/Catch2
GIT_TAG v3.6.0
URL https://github.com/catchorg/Catch2/archive/refs/tags/v3.7.1.tar.gz
)
FetchContent_MakeAvailable(Catch2)
# add_executable(tgi_trtllm_backend_tests tests/infer_test.cpp)
# target_link_libraries(tgi_trtllm_backend_tests PRIVATE tgi_trtllm_backend_impl Catch2::Catch2WithMain nlohmann_json::nlohmann_json spdlog::spdlog fmt::fmt CUDA::cudart CUDA::nvml)
add_executable(tgi_trtllm_backend_tests tests/test_hardware.cpp tests/test_backend.cpp)
target_include_directories(tgi_trtllm_backend_tests PUBLIC "${trtllm_SOURCE_DIR}/cpp/include")
target_include_directories(tgi_trtllm_backend_tests PUBLIC "csrc/")
target_link_libraries(tgi_trtllm_backend_tests PRIVATE ${TRTLLM_LIBS} CUDA::cudart CUDA::nvml)
target_link_libraries(tgi_trtllm_backend_tests PUBLIC Catch2::Catch2WithMain nlohmann_json::nlohmann_json spdlog::spdlog tgi_trtllm_backend_impl)
if(${CMAKE_BUILD_TYPE} STREQUAL "Debug")
target_link_libraries(tgi_trtllm_backend_tests PRIVATE tensorrt_llm nvinfer_plugin_tensorrt_llm)
else()
target_link_libraries(tgi_trtllm_backend_tests PRIVATE tensorrt_llm nvinfer_plugin_tensorrt_llm tensorrt_llm_nvrtc_wrapperm)
endif ()
if(CMAKE_BUILD_TYPE MATCHES "Debug")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror -fsanitize=undefined -fsanitize=address")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Werror -fsanitize=undefined -fsanitize=address")
target_link_options(tgi_trtllm_backend_tests BEFORE PUBLIC -fsanitize=undefined PUBLIC -fsanitize=address)
endif()
list(APPEND CMAKE_MODULE_PATH ${catch2_SOURCE_DIR}/extras)
include(CTest)
include(Catch)
# catch_discover_tests(tgi_trtllm_backend_tests)
catch_discover_tests(tgi_trtllm_backend_tests)
endif ()

View File

@ -7,20 +7,21 @@ homepage.workspace = true
[dependencies]
async-trait = "0.1"
async-stream = "0.3"
#async-stream = "0.3"
clap = { version = "4.5", features = ["derive"] }
cxx = "1.0"
hashbrown = "0.14"
hf-hub = { workspace = true }
log = { version = "0.4", features = [] }
#log = { version = "0.4", features = [] }
text-generation-router = { path = "../../router" }
tokenizers = { workspace = true }
tokio = { version = "1.39", features = ["rt", "rt-multi-thread", "parking_lot", "signal", "sync"] }
tokio-stream = "0.1.15"
thiserror = "1.0.63"
tracing = "0.1"
tracing-opentelemetry = "0.25"
tracing-subscriber = { version = "0.3", features = ["json", "env-filter"] }
#tracing-opentelemetry = "0.25"
#tracing-subscriber = { version = "0.3", features = ["json", "env-filter"] }
pyo3 = { workspace = true }
[build-dependencies]
cmake = "0.1"

View File

@ -4,7 +4,7 @@ use std::env;
use std::env::consts::ARCH;
use std::path::{absolute, PathBuf};
const ADDITIONAL_BACKEND_LINK_LIBRARIES: [&str; 2] = ["spdlog", "fmt"];
const ADDITIONAL_BACKEND_LINK_LIBRARIES: [&str; 1] = ["spdlog"];
const CUDA_ARCH_LIST: Option<&str> = option_env!("CUDA_ARCH_LIST");
const CUDA_REQUIRED_VERSION: &str = "12.6";
const MPI_REQUIRED_VERSION: &str = "4.1";
@ -43,8 +43,8 @@ fn build_backend(is_debug: bool, opt_level: &str, out_dir: &PathBuf) -> (PathBuf
install_path = absolute(out_dir).expect("cannot happen").join(install_path);
}
let _ = cmake::Config::new(".")
.uses_cxx11()
let mut config = cmake::Config::new(".");
config.uses_cxx11()
.generator("Ninja")
.profile(match is_debug {
true => "Debug",
@ -53,9 +53,16 @@ fn build_backend(is_debug: bool, opt_level: &str, out_dir: &PathBuf) -> (PathBuf
.env("OPT_LEVEL", opt_level)
.define("CMAKE_INSTALL_PREFIX", &install_path)
.define("CMAKE_CUDA_COMPILER", "/usr/local/cuda/bin/nvcc")
.define("Python3_ROOT_DIR", "../venv")
.define("TGI_TRTLLM_BACKEND_TARGET_CUDA_ARCH_LIST", cuda_arch_list)
.define("TGI_TRTLLM_BACKEND_TRT_ROOT", tensorrt_path)
.build();
.define("TGI_TRTLLM_BACKEND_TRT_ROOT", tensorrt_path);
// Allow to override which Python to use ...
if let Some(python3) = option_env!("Python3_EXECUTABLE") {
config.define("Python3_EXECUTABLE", python3);
}
config.build();
// Additional transitive CMake dependencies
let deps_folder = out_dir.join("build").join("_deps");
@ -90,26 +97,25 @@ fn build_ffi_layer(deps_folder: &PathBuf, is_debug: bool) {
CFG.include_prefix = "backends/trtllm";
cxx_build::bridge("src/lib.rs")
.static_flag(true)
.include(deps_folder.join("fmt-src").join("include"))
.std("c++23")
.include(deps_folder.join("spdlog-src").join("include"))
.include(deps_folder.join("json-src").join("include"))
.include(deps_folder.join("trtllm-src").join("cpp").join("include"))
.include("/usr/local/cuda/include")
.include("/usr/local/tensorrt/include")
.file("src/ffi.cpp")
.std("c++20")
.define("NDEBUG", ndebug)
.include("csrc/")
.file("csrc/ffi.hpp")
.define("TGI_TRTLLM_BACKEND_DEBUG", ndebug)
.compile("tgi_trtllm_backend");
println!("cargo:rerun-if-changed=CMakeLists.txt");
println!("cargo:rerun-if-changed=cmake/trtllm.cmake");
println!("cargo:rerun-if-changed=cmake/json.cmake");
println!("cargo:rerun-if-changed=cmake/fmt.cmake");
println!("cargo:rerun-if-changed=cmake/spdlog.cmake");
println!("cargo:rerun-if-changed=include/backend.h");
println!("cargo:rerun-if-changed=lib/backend.cpp");
println!("cargo:rerun-if-changed=include/ffi.h");
println!("cargo:rerun-if-changed=src/ffi.cpp");
println!("cargo:rerun-if-changed=csrc/backend.hpp");
println!("cargo:rerun-if-changed=csrc/backend.cpp");
println!("cargo:rerun-if-changed=csrc/hardware.hpp");
println!("cargo:rerun-if-changed=csrc/ffi.hpp");
}
fn main() {

View File

@ -1,6 +0,0 @@
FetchContent_Declare(
fmt
DOWNLOAD_EXTRACT_TIMESTAMP
URL https://github.com/fmtlib/fmt/archive/refs/tags/11.0.2.tar.gz
)
FetchContent_MakeAvailable(fmt)

View File

@ -1,6 +1,6 @@
fetchcontent_declare(
json
DOWNLOAD_EXTRACT_TIMESTAMP
URL https://github.com/nlohmann/json/releases/download/v3.11.3/json.tar.xz
# DOWNLOAD_EXTRACT_TIMESTAMP
URL https://github.com/nlohmann/json/archive/refs/tags/v3.11.3.tar.gz
)
fetchcontent_makeavailable(json)

View File

@ -1,6 +1,6 @@
set(SPDLOG_USE_FMT ON)
set(SPDLOG_BUILD_SHARED OFF)
set(SPDLOG_FMT_EXTERNAL ON)
set(SPDLOG_FMT_EXTERNAL OFF)
# Define the level at which SPDLOG_ compilation level is defined
if (${CMAKE_BUILD_TYPE} STREQUAL "Debug")
@ -11,7 +11,7 @@ endif ()
fetchcontent_declare(
spdlog
DOWNLOAD_EXTRACT_TIMESTAMP
# DOWNLOAD_EXTRACT_TIMESTAMP
URL https://github.com/gabime/spdlog/archive/refs/tags/v1.14.1.tar.gz
)
fetchcontent_makeavailable(spdlog)

View File

@ -11,6 +11,7 @@ set(CMAKE_CUDA_ARCHITECTURES ${TGI_TRTLLM_BACKEND_TARGET_CUDA_ARCH_LIST})
message(STATUS "Building for CUDA Architectures: ${CMAKE_CUDA_ARCHITECTURES}")
set(ENABLE_UCX OFF)
if (${CMAKE_BUILD_TYPE} STREQUAL "Debug")
set(FAST_BUILD ON)
set(NVTX_DISABLE OFF)
@ -20,11 +21,13 @@ else ()
set(NVTX_DISABLE ON)
endif ()
find_package(Python3 REQUIRED Interpreter)
fetchcontent_declare(
trtllm
GIT_REPOSITORY https://github.com/NVIDIA/TensorRT-LLM.git
GIT_TAG 201135e58aa525af7e523d091d4c9584229524bc
GIT_SHALLOW FALSE
GIT_REPOSITORY https://github.com/huggingface/TensorRT-LLM.git
GIT_TAG 1bb9ca4688805444f203647674bac1d7219d0579
GIT_SHALLOW ON
DOWNLOAD_EXTRACT_TIMESTAMP
)
fetchcontent_makeavailable(trtllm)

View File

@ -0,0 +1,79 @@
#include <ranges>
#include <nlohmann/json.hpp>
#include <spdlog/spdlog.h>
#include "backend.hpp"
#include "hardware.hpp"
namespace huggingface::tgi::backends::trtllm {
tle::ParallelConfig backend_workspace_t::parallel_config() const {
// Single engine (TP = PP = 1) -> using leader mode (no MPI involved)
const auto world_size = config_["/pretrained_config/mapping/world_size"_json_pointer].get<size_t>();
auto mode = tle::CommunicationMode::kLEADER;
std::optional<tle::OrchestratorConfig> orchestratorConfig = std::nullopt;
if (world_size > 1) {
SPDLOG_INFO("Detected sharded engine deployment, using orchestrator mode");
mode = tle::CommunicationMode::kORCHESTRATOR;
orchestratorConfig = std::make_optional<tle::OrchestratorConfig>(true, executor_worker_path_, nullptr, true);
} else {
SPDLOG_INFO("Detected single engine deployment, using leader mode");
}
return tle::ParallelConfig(tle::CommunicationType::kMPI, mode, std::nullopt, std::nullopt, orchestratorConfig);
}
tle::ExecutorConfig backend_workspace_t::executor_config() const {
// Retrieve the compute capabilities to enable some options at runtime
const auto compute_capabilities = hardware::cuda::compute_capabilities_t();
// Allocate the config
tle::ExecutorConfig executor_config(/* maxBeamWidth = */ 1);
// Set the parallel config as inferred
executor_config.setParallelConfig(parallel_config());
// Define some configuration variables
executor_config.setKvCacheConfig(tle::KvCacheConfig(true));
executor_config.setEnableChunkedContext(compute_capabilities.is_at_least_ampere());
executor_config.setSchedulerConfig(tle::SchedulerConfig(tle::CapacitySchedulerPolicy::kMAX_UTILIZATION));
return executor_config;
}
backend_t::backend_t(std::filesystem::path &engines_folder, std::filesystem::path &executor_worker_path)
: workspace(engines_folder, executor_worker_path), executor_(executor_factory_initializer(workspace)) {}
size_t backend_t::num_tokens_ready() const noexcept {
return executor_.getNumResponsesReady();
}
std::expected<request_id_t, backend_error_t>
backend_t::submit(std::span<const token_id_t> token_ids, const generation_params_t generation_params, const sampling_params_t sampling_params) noexcept {
SPDLOG_DEBUG("Submitting {:d} tokens to the executor for scheduling ({}, {})", token_ids.size(), generation_params, sampling_params);
return executor_.enqueueRequest(tle::Request {
{token_ids.begin(), token_ids.end()}, // Making actual copy of the tokens
static_cast<tle::SizeType32>(generation_params.max_new_tokens),
true,
(tle::SamplingConfig) sampling_params,
tle::OutputConfig { /* returnLogProbs= */ true },
std::nullopt,
std::nullopt,
std::nullopt,
std::nullopt,
workspace.generation_config().stop_words
});
}
std::vector<tle::Response> backend_t::pull_tokens() noexcept {
SPDLOG_TRACE(FMT_STRING("Pulling out tokens ({:d} available)"), num_tokens_ready());
return executor_.awaitResponses();
}
void backend_t::cancel(request_id_t request_id) noexcept {
SPDLOG_TRACE(FMT_STRING("Cancelling request: {:d}"), request_id);
executor_.cancelRequest(request_id);
}
}

View File

@ -0,0 +1,231 @@
#ifndef TGI_BACKEND_TRTLLM
#define TGI_BACKEND_TRTLLM
#include <cmath>
#include <cstdint>
#include <expected>
#include <fstream>
#include <list>
#include <span>
#include <nlohmann/json.hpp>
#include <spdlog/spdlog.h>
#include <spdlog/fmt/fmt.h>
#include <tensorrt_llm/executor/executor.h>
namespace huggingface::tgi::backends::trtllm {
namespace tle = tensorrt_llm::executor;
using json = nlohmann::json;
using request_id_t = uint64_t;
using token_id_t = tle::TokenIdType;
/**
* Represent the parameters used for generation
*/
struct generation_params_t {
uint32_t max_new_tokens;
};
/**
* Represent the parameters used to sample tokens from the logit distribution
*/
struct sampling_params_t {
uint32_t top_k;
float_t top_p;
float_t repetition_penalty;
float_t frequency_penalty;
float_t temperature;
uint64_t seed;
constexpr explicit operator tle::SamplingConfig() const {
return tle::SamplingConfig{
1,
top_k,
top_p,
std::nullopt,
std::nullopt,
std::nullopt,
seed,
temperature,
std::nullopt,
std::nullopt,
repetition_penalty,
std::nullopt,
frequency_penalty,
std::nullopt
};
}
};
/**
* Represent possible values from transformers generation `generation_config.json`.
* It usually stores default sampling parameters to use, such as top_p, temperature, etc.
*/
struct generation_config_t {
float_t top_p;
float_t temperature;
std::list<std::vector<int32_t>> stop_words;
constexpr explicit generation_config_t(const json &config) :
top_p(config.value("top_p", 1.0f)), temperature(config.value("temperature", 1.0f)), stop_words(0) {
if (config.contains("/eos_token_id"_json_pointer) && config["/eos_token_id"_json_pointer].is_array()) {
const auto &eos_token_id = config["/eos_token_id"_json_pointer];
std::for_each(eos_token_id.begin(), eos_token_id.end(), [this](const auto token_id) {
stop_words.emplace_back(1, token_id.template get<int32_t>());
});
SPDLOG_DEBUG("Detected {:d} predefined stop_words from generation_config.json", stop_words.size());
}
}
};
/**
* Helper class representing various items which are stored within the TensorRT-LLM engines folder and
* can be retrieved at runtime
*/
class backend_workspace_t {
private:
constexpr static auto as_json = [](const std::filesystem::path &path) -> json {
std::ifstream config_f(path);
return json::parse(config_f);
};
std::filesystem::path engines_folder_;
std::filesystem::path executor_worker_path_;
json config_;
generation_config_t generation_config_;
public:
backend_workspace_t(std::filesystem::path &engines_folder, std::filesystem::path &executor_worker_path) :
engines_folder_(engines_folder),
executor_worker_path_(executor_worker_path),
config_(as_json(engines_folder / "config.json")),
generation_config_(as_json(engines_folder / "generation_config.json")) {};
backend_workspace_t(std::filesystem::path &&engines_folder, std::filesystem::path &&executor_worker_path) :
engines_folder_(engines_folder),
executor_worker_path_(executor_worker_path),
config_(as_json(engines_folder / "config.json")),
generation_config_(as_json(engines_folder / "generation_config.json")) {};
/**
* Path to the folder containing the TensorRT-LLM engines
* @return local filesystem path to the folder
*/
[[nodiscard]] constexpr std::filesystem::path engines_folder() const { return engines_folder_; }
/**
* Hugging Face transformers' generated `generation_config_t` mapping information stored in the
* `generation_config.json` holding default generation parameters.
* @return `generation_config_t`
*/
[[nodiscard]] constexpr const generation_config_t &generation_config() const { return generation_config_; }
/**
* Factory method returning new `tensorrt_llm::executor::ParallelConfig` instance used
* to initialize `tensorrt_llm::executor::Executor` with multi-instance communication information
* @return `tensorrt_llm::executor::ParallelConfig` instance
*/
[[nodiscard]] tle::ParallelConfig parallel_config() const;
/**
* Factory method returning new `tensorrt_llm::executor::ExecutorConfig` instance used
* to initialize `tensorrt_llm::executor::Executor`
* @return `tensorrt_llm::executor::ExecutorConfig` instance
*/
[[nodiscard]] tle::ExecutorConfig executor_config() const;
};
/**
* Error raised by the underlying backend implementation
*/
enum backend_error_t {
EXECUTOR_NOT_READY = 3,
EXECUTOR_SCHEDULING_FAILED = 4,
};
/**
* Actual TensorRT-LLM backend implementation interacting with TensorRT-LLM Executor service to
* - schedule new request
* - pull status of submitted request(s)
* - cancel submitted request(s)
*/
class backend_t {
private:
backend_workspace_t workspace;
tle::Executor executor_;
public:
backend_t(std::filesystem::path &engines_folder, std::filesystem::path &executor_worker_path);
backend_t(std::filesystem::path &&engines_folder, std::filesystem::path &&executor_worker_path)
: backend_t(engines_folder, executor_worker_path) {};
/**
* Submit a new request to the executor
* @param token_ids
* @param generation_params
* @param sampling_params
* @return Either newly submitted request's id or the error why it failed to submit
*/
[[nodiscard("Discarded executor request_id needs to be assigned")]]
std::expected<request_id_t, backend_error_t>
submit(std::span<const token_id_t> token_ids, generation_params_t generation_params,
sampling_params_t sampling_params) noexcept;
/**
* Query the number of tokens available across all in-flight generations
* @return
*/
[[nodiscard("Pulling out the number of tokens")]]
size_t num_tokens_ready() const noexcept;
/**
* Pull out newly generated tokens from the executor
* @return
*/
[[nodiscard("")]]
std::vector<tle::Response> pull_tokens() noexcept;
/**
* Cancel the specified request on the executor' set
* @param request_id Request's Identifier to remove from the in-flight executor
*/
void cancel(request_id_t) noexcept;
};
/**
* Create a TensorRT-LLM executor from a workspace
*/
const auto executor_factory_initializer = [](const backend_workspace_t &workspace) -> tle::Executor {
return {workspace.engines_folder(), tensorrt_llm::executor::ModelType::kDECODER_ONLY,
workspace.executor_config()};
};
}
/**
* Helper structures to define formatting strategies for various types in the backend
*/
template<>
struct fmt::formatter<huggingface::tgi::backends::trtllm::generation_params_t> : formatter<string_view> {
auto format(huggingface::tgi::backends::trtllm::generation_params_t const &c,
format_context &ctx) const -> format_context::iterator {
return fmt::format_to(ctx.out(), "generation_params_t{{ max_new_tokens={:d} }}", c.max_new_tokens);
}
};
template<>
struct fmt::formatter<huggingface::tgi::backends::trtllm::sampling_params_t> : formatter<string_view> {
auto format(huggingface::tgi::backends::trtllm::sampling_params_t const &c,
format_context &ctx) const -> format_context::iterator {
return fmt::format_to(
ctx.out(),
"sampling_params_t{{ top_k={:d}, top_p={:.3f}, repetition_penalty={:.3f}, frequency_penalty={:.3f}, temperature={:.3f}, seed={:d} }}",
c.top_k, c.top_p, c.repetition_penalty, c.frequency_penalty, c.temperature, c.seed
);
}
};
#endif

View File

@ -0,0 +1,162 @@
#ifndef TGI_BACKEND_TRTLLM_FFI
#define TGI_BACKEND_TRTLLM_FFI
#include <memory>
#include <thread>
#include <nvml.h>
#include <tensorrt_llm/common/tllmException.h>
#include <tensorrt_llm/plugins/api/tllmPlugin.h>
#include <spdlog/spdlog.h>
#include <backend.hpp>
#include <hardware.hpp>
namespace rust::behavior {
template<typename Try, typename Fail>
static void trycatch(Try &&func, Fail &&fail) noexcept try {
func();
} catch (tensorrt_llm::common::TllmException &e) {
fail(e.what());
}
}
namespace huggingface::tgi::backends::trtllm {
class tensorrt_llm_backend_t;
}
#include "backends/trtllm/src/lib.rs.h"
namespace huggingface::tgi::backends::trtllm {
std::once_flag backend_initialized_flag;
class tensorrt_llm_backend_t {
private:
backend_t inner_;
public:
tensorrt_llm_backend_t(std::filesystem::path &&engine_folder, std::filesystem::path &&executor_worker_path)
: inner_(engine_folder, executor_worker_path) {}
size_t num_tokens_ready() const noexcept {
return inner_.num_tokens_ready();
}
request_id_t submit(
rust::Slice<const uint32_t> tokens,
uint32_t max_new_tokens,
uint32_t top_k,
float_t top_p,
float_t temperature,
float_t repetition_penalty,
float_t frequency_penalty,
uint64_t seed
) {
// This is enabled only if using add_compile_definitions(SPDLOG_ACTIVE_LEVEL=SPDLOG_LEVEL_TRACE)
SPDLOG_TRACE(FMT_STRING("[FFI] Submitting {:d} prompt tokens to the executor"));
// Submit the request to the executor and get back a potential request_id used to track request status
const auto signed_tokens = std::vector<int32_t>(tokens.begin(), tokens.end());
const auto maybe_request_id = inner_.submit(
signed_tokens,
{max_new_tokens},
{top_k, top_p, repetition_penalty, frequency_penalty, temperature, seed}
);
// If we do have a value, let's return the request_id
if(maybe_request_id.has_value()) [[likely]] {
return *maybe_request_id;
} else {
SPDLOG_WARN("[FFI] Failed to submit request to the executor");
return maybe_request_id.error();
}
}
std::unique_ptr<std::vector<generation_step_t>> pull_tokens() noexcept {
if(num_tokens_ready() > 0) [[likely]] {
const auto responses = inner_.pull_tokens();
SPDLOG_TRACE("[FFI] Successfully pulled out {:d} responses from executor", responses.size());
// Transform tle::Response to GenerationStep
auto steps = std::make_unique<std::vector<generation_step_t>>();
std::ranges::transform(responses.begin(), responses.end(), std::back_inserter(*steps), [](const tle::Response &r) {
const auto reqId = r.getRequestId();
if (!r.hasError()) [[likely]] {
const auto result = r.getResult();
return generation_step_t{
reqId,
static_cast<uint32_t>(result.outputTokenIds[0][0]),
result.logProbs.value()[0][0],
result.isFinal,
false,
std::string()
};
} else {
return generation_step_t{
reqId,
0,
0.0,
true,
true,
std::move(r.getErrorMsg())
};
}
});
return steps;
} else {
return std::make_unique<std::vector<generation_step_t>>();
}
}
void cancel(request_id_t requestId) noexcept {
SPDLOG_DEBUG("[FFI] cancelling request {:d}", requestId);
inner_.cancel(requestId);
}
};
void initialize_logging() {
#ifndef TGI_TRTLLM_BACKEND_DEBUG
if (const auto TRTLLM_LOG_LEVEL_CSTR = std::getenv("TRTLLM_LOG_LEVEL")) {
std::string log_level(TRTLLM_LOG_LEVEL_CSTR);
std::transform(log_level.begin(), log_level.end(), log_level.begin(), [](unsigned char c) {
return std::tolower(c);
});
if (log_level == "debug")
spdlog::set_level(spdlog::level::debug);
else
spdlog::set_level(spdlog::level::info);
}
#else
spdlog::set_level(spdlog::level::debug);
#endif
}
void initialize_tensorrt_llm_backend() {
SPDLOG_INFO("Initializing TGI - TensoRT-LLM Backend (v{})", tle::version());
// Initialize everyone
initialize_logging();
nvmlInit_v2();
initTrtLlmPlugins();
const auto numGpus = huggingface::tgi::hardware::cuda::get_device_count();
if (numGpus.has_value()) {
SPDLOG_INFO("[FFI] Detected {:d} Nvidia GPU(s)", *numGpus);
} else {
SPDLOG_WARN("[FFI] Failed to detected Nvidia GPU(s) on the system");
// todo: throw
}
}
std::unique_ptr<tensorrt_llm_backend_t> create_backend_from_engine_folder(const rust::Str engines_folder, const rust::Str executor_worker_path) {
std::call_once(backend_initialized_flag, initialize_tensorrt_llm_backend);
return std::make_unique<tensorrt_llm_backend_t>(
std::filesystem::path(std::string_view(engines_folder.begin(), engines_folder.end()), std::filesystem::path::format::auto_format),
std::filesystem::path(std::string_view(executor_worker_path.begin(), executor_worker_path.end()), std::filesystem::path::format::auto_format)
);
}
}
#endif

View File

@ -0,0 +1,81 @@
#ifndef TGI_HARDWARE_CUDA
#define TGI_HARDWARE_CUDA
#include <cstdint>
#include <optional>
#include <nvml.h>
namespace huggingface::tgi::hardware::cuda {
static constexpr auto VOLTA = std::make_tuple(7u, 0u);
static constexpr auto TURING = std::make_tuple(7u, 5u);
static constexpr auto AMPERE = std::make_tuple(8u, 0u);
static constexpr auto HOPPER = std::make_tuple(9u, 0u);
static constexpr auto ADA_LOVELACE = std::make_tuple(8u, 9u);
/**
* Get the number of GPUs on the local machine
* @return std::nullopt if no device is available, otherwise >= 1
*/
inline std::optional<size_t> get_device_count() {
uint32_t numGpus = 0;
if (nvmlDeviceGetCount_v2(&numGpus) == NVML_SUCCESS) {
return numGpus;
}
return std::nullopt;
}
/**
* Store information about the version of the CUDA Compute Capabilities detected on the device
*/
struct compute_capabilities_t {
int32_t major;
int32_t minor;
compute_capabilities_t(): compute_capabilities_t(0) {}
explicit compute_capabilities_t(size_t device_idx): major(-1), minor(-1) {
nvmlDevice_t device;
if (nvmlDeviceGetHandleByIndex_v2(device_idx, &device) == NVML_SUCCESS) {
nvmlDeviceGetCudaComputeCapability(device, &major, &minor);
}
};
compute_capabilities_t(int32_t major, int32_t minor): major(major), minor(minor) {}
/**
* Evaluate if the underlying capabilities is at least greater or equals to the provided 2-tuple (major, minor)
* @param sm Architecture version (major, minor)
* @return True if greater or equals to the underlying compute capabilities
*/
[[nodiscard]] constexpr auto is_at_least(std::tuple<uint32_t, uint32_t> sm) const -> decltype(auto) { return std::tie(major, minor) >= sm; }
/**
* Check if the capabilities match at least Volta architecture (sm_70)
* @return true if at least Volta (>= sm_70), false otherwise
*/
[[nodiscard]] constexpr bool is_at_least_volta() const { return is_at_least(VOLTA); }
/**
* Check if the capabilities match at least Turing architecture (sm_75)
* @return true if at least Turing (>= sm_75), false otherwise
*/
[[nodiscard]] constexpr bool is_at_least_turing() const { return is_at_least(TURING); }
/**
* Check if the capabilities match at least Ampere architecture (sm_80)
* @return true if at least Ampere (>= sm_80), false otherwise
*/
[[nodiscard]] constexpr bool is_at_least_ampere() const { return is_at_least(AMPERE); }
/**
* Check if the capabilities match at least Ada Lovelace architecture (sm_89)
* @return true if at least Ada Lovelace (>= sm_89), false otherwise
*/
[[nodiscard]] constexpr bool is_at_least_ada_lovelace() const { return is_at_least(ADA_LOVELACE); }
/**
* Check if the capabilities match at least Hopper architecture (sm_90)
* @return true if at least Hopper (>= sm_90), false otherwise
*/
[[nodiscard]] constexpr bool is_at_least_hopper() const { return is_at_least(HOPPER); }
};
}
#endif

View File

@ -1,144 +0,0 @@
//
// Created by Morgan Funtowicz on 6/30/24.
//
#ifndef TGI_TRTLLM_BACKEND_H
#define TGI_TRTLLM_BACKEND_H
#include <array>
#include <cmath>
#include <filesystem>
#include <span>
#include <vector>
#include <nlohmann/json.hpp>
#include <tensorrt_llm/runtime/common.h>
#include <tensorrt_llm/executor/executor.h>
#include <tensorrt_llm/plugins/api/tllmPlugin.h>
using json = nlohmann::json;
namespace tle = tensorrt_llm::executor;
#define CAST_SIZETYPE(x) static_cast<tle::SizeType32>(x)
namespace huggingface::tgi::backends {
using RequestId = tle::IdType;
using TokenId = tle::TokenIdType;
const static auto OUTPUT_CONFIG = tle::OutputConfig(true, false, false, true, false);
constexpr auto FMT_NOT_ENOUGH_GPUS = FMT_STRING(
"Not enough GPUs to allocate requested model (detected: {:d}, required: {:d})");
constexpr auto FMT_EXECUTOR_STATS = FMT_STRING(
"Submitting inference [{}] to the executor ({:d} already in-flight)");
constexpr auto FMT_SAMPLING_CONFIG = FMT_STRING(
"Sampling: topK={:d}, topP={:.1f}, temperature={:.1f}, repetition_penalty={:.1f}, frequency_penalty={:.1f}, seed={:d}");
/**
* Initialize all the components required by TRTLLM.
* It is required to call this function before attempting to load any engine
*/
void InitializeBackend();
/**
* Initialize logging mechanism
*/
void InitializeLogging();
/**
*
* @param config TensorRT-LLM configuration object
* @param workerPath Path to the "executorWorker" provided by TensorRT-LLM when using orchestrator mode
* @return
*/
tle::ExecutorConfig GetExecutorConfig(const json &config, const std::string &workerPath);
/**
*
* @param worldSize
* @param workerPath
* @return
*/
tle::ParallelConfig GetParallelConfig(size_t worldSize, std::string workerPath) noexcept;
/**
* Get the sampling configuration from the parameters provided by TGI
* @param topK
* @param topP
* @param temperature
* @param repetition_penalty
* @param frequency_penalty
* @param seed
* @return
*/
tle::SamplingConfig GetSamplingConfig(
uint32_t topK,
float_t topP,
float_t temperature,
float_t repetition_penalty,
float_t frequency_penalty,
uint64_t seed
) noexcept;
/**
* Attempt to retrieve the
* @param generationConfigPath
* @return
*/
std::optional<std::list<std::vector<TokenId>>>
GetStopWordsFromConfig(const std::filesystem::path &generationConfigPath) noexcept;
/**
*
*/
class TensorRtLlmBackend {
private:
const json config;
tle::Executor executor;
/** Frequently accessed variables cached here **/
uint32_t maxNumTokens;
std::list<std::vector<TokenId>> stopWords;
public:
explicit TensorRtLlmBackend(
const std::filesystem::path &engineFolder,
const std::filesystem::path &executorWorker
);
/**
* Query the executor for the number of token available for pulling
* @return
*/
[[nodiscard]] size_t NumResponsesReady() const;
/**
* Submit a new generation task to the executor
* @param tokens
* @param topK
* @param topP
* @param temperature
* @param repetitionPenalty
* @param frequencyPenalty
* @param seed
* @return Request id related to this generation for reference
*/
[[nodiscard]] RequestId Submit(
const std::vector<TokenId> &tokens,
uint32_t maxNewTokens,
int32_t topK,
float_t topP,
float_t temperature,
float_t repetitionPenalty,
float_t frequencyPenalty,
uint64_t seed
);
[[nodiscard]] std::vector<tle::Response> PullNewTokens();
};
}
#endif //TGI_TRTLLM_BACKEND_H

View File

@ -1,75 +0,0 @@
//
// Created by mfuntowicz on 7/11/24.
//
#ifndef TGI_TRTLLM_BACKEND_FFI_H
#define TGI_TRTLLM_BACKEND_FFI_H
#include <cmath>
#include <cstddef>
#include <memory>
#include "backend.h"
namespace huggingface::tgi::backends {
class TensorRtLlmBackendImpl;
}
// Template to support returning error from TllmException back to Rust in a Result<>
#include <tensorrt_llm/common/tllmException.h>
namespace rust::behavior {
template<typename Try, typename Fail>
static void trycatch(Try &&func, Fail &&fail) noexcept try {
func();
} catch (tensorrt_llm::common::TllmException &e) {
fail(e.what());
}
}
#include "backends/trtllm/src/lib.rs.h"
namespace huggingface::tgi::backends {
class TensorRtLlmBackendImpl : public TensorRtLlmBackend {
public:
/***
*
* @param engineFolder
* @param executorWorker
*/
TensorRtLlmBackendImpl(const std::string_view &engineFolder, const std::string_view &executorWorker);
/***
*
* @param tokens
* @param maxNewTokens
* @param topK
* @param topP
* @param temperature
* @param repetition_penalty
* @param frequency_penalty
* @param seed
* @return
*/
[[nodiscard("returned request id should be used to refer to the request's generation result later on")]]
uint64_t
Submit(rust::Slice<const uint32_t> tokens, uint32_t maxNewTokens,
int32_t topK, float_t topP, float_t temperature,
float_t repetition_penalty, float_t frequency_penalty, uint64_t seed);
/***
*
* @return
*/
std::unique_ptr<std::vector<GenerationStep>> PullTokens();
};
/***
*
* @param engineFolder
* @return
*/
std::unique_ptr<TensorRtLlmBackendImpl> CreateTensorRtLlmBackend(rust::Str engineFolder, rust::Str executorWorker);
}
#endif //TGI_TRTLLM_BACKEND_FFI_H

View File

@ -1,59 +0,0 @@
//
// Created by mfuntowicz on 7/23/24.
//
#ifndef TGI_TRTLLM_BACKEND_HARDWARE_H
#define TGI_TRTLLM_BACKEND_HARDWARE_H
#include <cstdint>
#include <limits>
#include <fmt/base.h>
#include <spdlog/spdlog.h>
#include <nvml.h>
namespace huggingface::hardware::cuda {
#define AMPERE_SM_MAJOR 8
#define HOPPER_SM_MAJOR 9
/**
* Store information about the version of the CUDA Compute Capabilities detected on the device
*/
struct CudaComputeCapabilities {
int32_t major;
int32_t minor;
[[nodiscard]] constexpr bool IsPostAmpere() const { return major >= AMPERE_SM_MAJOR; }
[[nodiscard]] constexpr bool IsPostHopper() const { return major >= HOPPER_SM_MAJOR; }
};
CudaComputeCapabilities GetCudaComputeCapabilities() {
// Get the compute capabilities of the current hardware
nvmlDevice_t device;
CudaComputeCapabilities capabilities{0, 0};
if (nvmlDeviceGetHandleByIndex_v2(0, &device) == NVML_SUCCESS) {
SPDLOG_DEBUG("Successfully acquired nvmlDevice_t = 0");
if (nvmlDeviceGetCudaComputeCapability(device, &capabilities.major, &capabilities.minor) == NVML_SUCCESS) {
SPDLOG_INFO("Detected sm_{:d}{:d} compute capabilities", capabilities.major, capabilities.minor);
}
}
return capabilities;
}
/**
* Return the number of GPU detected. If no GPU is detected, return size_t::max()
* @return
*/
std::optional<size_t> GetNumDevices() {
uint32_t numGpus = 0;
if (nvmlDeviceGetCount_v2(&numGpus) == NVML_SUCCESS) {
return std::optional(numGpus);
} else {
return std::nullopt;
}
}
}
#endif //TGI_TRTLLM_BACKEND_HARDWARE_H

View File

@ -1,203 +0,0 @@
#include <cstdlib>
#include <fstream>
#include <fmt/ranges.h>
#include <spdlog/spdlog.h>
#include <nvml.h>
#include "backend.h"
#include "hardware.h"
void huggingface::tgi::backends::InitializeLogging() {
#ifdef NDEBUG
if (const auto TRTLLM_LOG_LEVEL_CSTR = std::getenv("TRTLLM_LOG_LEVEL")) {
std::string log_level(TRTLLM_LOG_LEVEL_CSTR);
std::transform(log_level.begin(), log_level.end(), log_level.begin(), [](unsigned char c) {
return std::tolower(c);
});
if (log_level == "debug")
spdlog::set_level(spdlog::level::debug);
else
spdlog::set_level(spdlog::level::info);
}
#else
spdlog::set_level(spdlog::level::debug);
#endif
}
void huggingface::tgi::backends::InitializeBackend() {
SPDLOG_INFO("Initializing Backend...");
nvmlInit_v2();
initTrtLlmPlugins();
InitializeLogging();
SPDLOG_INFO("Backend Executor Version: {}", tle::version());
const auto numGpus = huggingface::hardware::cuda::GetNumDevices();
if (numGpus.has_value()) {
SPDLOG_INFO("Detected {:d} Nvidia GPU(s)", numGpus.value());
} else {
SPDLOG_WARN("Failed to detected Nvidia GPU(s) on the system");
}
}
[[nodiscard]]
tle::ParallelConfig
huggingface::tgi::backends::GetParallelConfig(const size_t worldSize, const std::string workerPath) noexcept {
auto mode = tle::CommunicationMode::kLEADER;
std::optional<tle::OrchestratorConfig> orchestratorConfig = std::nullopt;
if (worldSize > 1) {
SPDLOG_INFO("Detected sharded engine deployment, using orchestrator mode");
mode = tle::CommunicationMode::kORCHESTRATOR;
orchestratorConfig = std::make_optional<tle::OrchestratorConfig>(true, workerPath, nullptr, true);
} else {
SPDLOG_INFO("Detected single engine deployment, using leader mode");
}
return tle::ParallelConfig(tle::CommunicationType::kMPI, mode, std::nullopt, std::nullopt, orchestratorConfig);
}
[[nodiscard]]
tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) {
tle::ExecutorConfig execConfig(/* maxBeamWidth = */ 1);
// Retrieve the compute capabilities to enable some options at runtime
const auto computeCapabilities = huggingface::hardware::cuda::GetCudaComputeCapabilities();
// Single engine (TP = PP = 1) -> using leader mode (no MPI involved)
const auto worldSize = config["/pretrained_config/mapping/world_size"_json_pointer].get<size_t>();
execConfig.setParallelConfig(GetParallelConfig(worldSize, workerPath));
// Define some configuration variables
execConfig.setKvCacheConfig(tle::KvCacheConfig(true));
execConfig.setEnableChunkedContext(computeCapabilities.IsPostAmpere());
execConfig.setSchedulerConfig(tle::SchedulerConfig(tle::CapacitySchedulerPolicy::kMAX_UTILIZATION));
return execConfig;
}
tle::SamplingConfig huggingface::tgi::backends::GetSamplingConfig(
const uint32_t topK,
const float_t topP,
const float_t temperature,
const float_t repetition_penalty,
const float_t frequency_penalty,
const uint64_t seed) noexcept {
return tle::SamplingConfig(
1, // TGI only use a single beam
topK,
topP,
std::nullopt,
std::nullopt,
std::nullopt,
seed,
temperature,
temperature,
std::nullopt,
repetition_penalty,
std::nullopt,
frequency_penalty
);
}
std::optional<std::list<std::vector<huggingface::tgi::backends::TokenId>>>
huggingface::tgi::backends::GetStopWordsFromConfig(
const std::filesystem::path &generationConfigPath) noexcept {
if (exists(generationConfigPath)) {
const auto generationConfig = json::parse(std::ifstream(generationConfigPath));
if (const auto eosTokenIds = generationConfig["/eos_token_id"_json_pointer]; eosTokenIds.is_array()) {
SPDLOG_INFO(FMT_STRING("Found {:d} EOS tokens"), eosTokenIds.size());
std::list<std::vector<huggingface::tgi::backends::TokenId>> stopWords(eosTokenIds.size());
const auto to_single_token = [](const auto tokenIdObj) -> decltype(stopWords)::value_type {
return {tokenIdObj.template get<tle::TokenIdType>()};
};
std::transform(eosTokenIds.cbegin(), eosTokenIds.cend(), stopWords.begin(), to_single_token);
return stopWords;
} else {
SPDLOG_INFO("Invalid EOS tokens entry found (not an array)");
}
} else {
SPDLOG_INFO("No EOS tokens found, generation_config.json doesn't exist");
}
return std::nullopt;
}
huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend(
const std::filesystem::path &enginesFolder,
const std::filesystem::path &executorWorker
) :
config(json::parse(std::ifstream(enginesFolder / "config.json"))),
executor(enginesFolder, tensorrt_llm::executor::ModelType::kDECODER_ONLY,
GetExecutorConfig(config, executorWorker.string())) {
SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get<std::string_view>());
// Ensure we have enough GPUs on the system
const auto worldSize = config["/pretrained_config/mapping/world_size"_json_pointer].get<size_t>();
const auto numGpus = huggingface::hardware::cuda::GetNumDevices().value_or(0);
if (numGpus < worldSize) {
SPDLOG_CRITICAL(FMT_NOT_ENOUGH_GPUS, numGpus, worldSize);
// todo : raise exception to catch on rust side
}
// Cache variables
maxNumTokens = config["/build_config/max_num_tokens"_json_pointer].get<uint32_t>();
// Attempt to discover stopWords from the generation_config.json
const auto generationConfigPath = enginesFolder / "generation_config.json";
stopWords = GetStopWordsFromConfig(generationConfigPath).value_or(std::list<std::vector<TokenId>>());
}
[[nodiscard("Returned number of requests needs to be consumed")]]
size_t huggingface::tgi::backends::TensorRtLlmBackend::NumResponsesReady() const {
#ifdef NDEBUG
return executor.getNumResponsesReady();
#else
const auto numResponses = executor.getNumResponsesReady();
if (numResponses > 0) SPDLOG_INFO(FMT_STRING("Num responses ready: {:d}"), numResponses);
return numResponses;
#endif
}
[[nodiscard("Returned request id needs to be provided back to gather generated tokens")]]
tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
const std::vector<tle::TokenIdType> &tokens,
const uint32_t maxNewTokens,
const int32_t topK,
const float_t topP,
const float_t temperature,
const float_t repetitionPenalty,
const float_t frequencyPenalty,
const uint64_t seed
) {
const auto maxNewTokensChecked = std::min(maxNewTokens, static_cast<uint32_t>(maxNumTokens - tokens.size()));
#ifndef NDEBUG
{
const auto &iterations = executor.getLatestIterationStats();
const auto &lastIteration = iterations.front();
SPDLOG_DEBUG(FMT_EXECUTOR_STATS, fmt::join(tokens, ", "), lastIteration.numActiveRequests);
SPDLOG_DEBUG(FMT_SAMPLING_CONFIG, topK, topP, temperature, repetitionPenalty, frequencyPenalty, seed);
SPDLOG_DEBUG(FMT_STRING("Asking for max_new_tokens={:d}"), maxNewTokensChecked);
}
#endif
const auto sampling = GetSamplingConfig(topK, topP, temperature, repetitionPenalty, frequencyPenalty, seed);
// Build the request
auto request = tle::Request{tokens, CAST_SIZETYPE(maxNewTokensChecked), true, sampling, OUTPUT_CONFIG};
request.setStopWords(stopWords);
// Submit to the executor for batching
return executor.enqueueRequest(request);
}
std::vector<tle::Response> huggingface::tgi::backends::TensorRtLlmBackend::PullNewTokens() {
return executor.awaitResponses();
}

View File

@ -2,7 +2,7 @@
set -ex
TRT_VER_BASE="10.4.0"
TRT_VER_BASE="10.6.0"
TRT_VER_FULL="${TRT_VER_BASE}.26"
CUDA_VER="12.6"
CUDNN_VER="9.5.0.50-1"

View File

@ -1,89 +0,0 @@
//
// Created by mfuntowicz on 6/30/24.
//
#pragma once
#include <algorithm>
#include <exception>
#include <filesystem>
#include <functional>
#include <limits>
#include <iterator>
#include <ranges>
#include <vector>
#include <spdlog/spdlog.h>
#include "backends/trtllm/include/ffi.h"
huggingface::tgi::backends::TensorRtLlmBackendImpl::TensorRtLlmBackendImpl(
const std::string_view &engineFolder,
const std::string_view &executorWorker
) : TensorRtLlmBackend(engineFolder, executorWorker) {}
uint64_t huggingface::tgi::backends::TensorRtLlmBackendImpl::Submit(
rust::Slice<const uint32_t> tokens,
uint32_t maxNewTokens,
int32_t topK,
float_t topP,
float_t temperature,
float_t repetition_penalty,
float_t frequency_penalty,
uint64_t seed) {
// This will copy all the items from the initial slice
std::vector<int32_t> tokens_(tokens.begin(), tokens.end());
return TensorRtLlmBackend::Submit(
std::move(tokens_), maxNewTokens, topK, topP, temperature, repetition_penalty, frequency_penalty, seed);
}
std::unique_ptr<std::vector<huggingface::tgi::backends::GenerationStep>>
huggingface::tgi::backends::TensorRtLlmBackendImpl::PullTokens() {
const auto responses = TensorRtLlmBackend::PullNewTokens();
auto steps = std::make_unique<std::vector<GenerationStep>>();
steps->reserve(responses.size());
#ifndef NDEBUG
SPDLOG_DEBUG(FMT_STRING("Pulled out {:d} new tokens"), responses->size());
#endif
// Transform tle::Response to GenerationStep
std::ranges::transform(responses.begin(), responses.end(), std::back_inserter(*steps), [](const tle::Response &r) {
const auto reqId = r.getRequestId();
if (!r.hasError()) {
const auto result = r.getResult();
return GenerationStep{
reqId,
static_cast<uint32_t>(result.outputTokenIds[0][0]),
result.logProbs.value()[0][0],
result.isFinal,
false,
std::string()
};
} else {
return GenerationStep{
reqId,
0,
0.0,
true,
true,
std::move(r.getErrorMsg())
};
}
});
return steps;
}
std::unique_ptr<huggingface::tgi::backends::TensorRtLlmBackendImpl>
huggingface::tgi::backends::CreateTensorRtLlmBackend(rust::Str engineFolder, rust::Str executorWorker) {
SPDLOG_INFO("Creating TensorRT-LLM Backend");
// Unconditionally call this to initialize and discover TRTLLM plugins
InitializeBackend();
const auto enginePath = std::string_view(engineFolder.begin(), engineFolder.end());
const auto executorPath = std::string_view(executorWorker.begin(), executorWorker.end());
return std::make_unique<TensorRtLlmBackendImpl>(std::move(enginePath), std::move(executorPath));
}

View File

@ -4,10 +4,11 @@ pub mod errors;
mod looper;
mod utils;
#[cxx::bridge(namespace = "huggingface::tgi::backends")]
#[cxx::bridge(namespace = "huggingface::tgi::backends::trtllm")]
mod ffi {
/// Struct used as shared type between rust and C++ to represent the result
/// of a single decoding iteration
#[cxx_name = "generation_step_t"]
#[derive(Debug, Clone)]
pub struct GenerationStep {
request_id: u64,
@ -19,9 +20,10 @@ mod ffi {
}
unsafe extern "C++" {
include!("backends/trtllm/src/ffi.cpp");
include!("backends/trtllm/csrc/ffi.hpp");
/// Represent an instance of the underlying TensorRT-LLM backend
#[cxx_name = "tensorrt_llm_backend_t"]
type TensorRtLlmBackendImpl;
/// Create an instance backed behind a std::unique_ptr to manage the lifespan of the backend
@ -38,21 +40,18 @@ mod ffi {
/// ```
///
/// ```
#[rust_name = "create_tensorrt_llm_backend"]
fn CreateTensorRtLlmBackend(
fn create_backend_from_engine_folder(
engine_folder: &str,
executor_worker: &str,
) -> Result<UniquePtr<TensorRtLlmBackendImpl>>;
#[rust_name = "num_responses_ready"]
fn NumResponsesReady(self: &TensorRtLlmBackendImpl) -> usize;
fn num_tokens_ready(self: &TensorRtLlmBackendImpl) -> usize;
#[rust_name = "submit"]
fn Submit(
fn submit(
self: Pin<&mut TensorRtLlmBackendImpl>,
tokens: &[u32],
max_new_tokens: u32,
top_k: i32,
top_k: u32,
top_p: f32,
temperature: f32,
repetition_penalty: f32,
@ -60,9 +59,10 @@ mod ffi {
seed: u64,
) -> Result<u64>;
#[rust_name = "pull_tokens"]
fn PullTokens(
fn pull_tokens(
self: Pin<&mut TensorRtLlmBackendImpl>,
) -> Result<UniquePtr<CxxVector<GenerationStep>>>;
fn cancel(self: Pin<&mut TensorRtLlmBackendImpl>, request_id: u64);
}
}

View File

@ -1,14 +1,13 @@
use std::hint;
use std::ops::Deref;
use std::path::Path;
use async_trait::async_trait;
use cxx::UniquePtr;
use hashbrown::HashMap;
use std::hint;
use std::ops::Deref;
use std::path::Path;
use tokenizers::Tokenizer;
use tokio::sync::mpsc::{unbounded_channel, UnboundedReceiver, UnboundedSender};
use tokio::sync::TryAcquireError;
use tokio::task::{spawn_blocking, JoinHandle};
use tokio::task::spawn_blocking;
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tracing::{debug, error, warn};
@ -22,7 +21,7 @@ use text_generation_router::validation::{Chunk, ValidGenerateRequest};
use text_generation_router::{FinishReason, Token};
use crate::errors::TensorRtLlmBackendError;
use crate::ffi::{create_tensorrt_llm_backend, GenerationStep, TensorRtLlmBackendImpl};
use crate::ffi::{create_backend_from_engine_folder, GenerationStep, TensorRtLlmBackendImpl};
use crate::utils::first_line;
type InferResult<T> = Result<T, InferError>;
@ -30,9 +29,10 @@ type InferResult<T> = Result<T, InferError>;
/// Wrap the requests along with the channel used to stream back to the client the decoded tokens
struct GenerationContext {
request: ValidGenerateRequest,
streamer: UnboundedSender<InferResult<InferStreamResponse>>,
tokens: Vec<u32>,
start: Option<Instant>,
queued: Instant,
streamer: UnboundedSender<InferResult<InferStreamResponse>>,
}
#[derive(Debug, Copy, Clone)]
@ -58,31 +58,22 @@ impl<'step> TryFrom<&'step GenerationStep> for DecodedToken {
}
}
/// Wraps the decoded token with the channel used to stream back to the client the decoded tokens
struct DecodedTokenContext {
token: DecodedToken,
start: Option<Instant>,
queued: Instant,
channel: UnboundedSender<InferResult<InferStreamResponse>>,
}
fn executor_status_looper(
mut backend: UniquePtr<TensorRtLlmBackendImpl>,
max_inflight_requests: usize,
mut waiting_requests: UnboundedReceiver<GenerationContext>,
post_processor_sender: UnboundedSender<(u64, InferResult<DecodedTokenContext>)>,
tokenizer: Tokenizer,
mut backend: UniquePtr<TensorRtLlmBackendImpl>,
mut backlog: UnboundedReceiver<GenerationContext>,
) {
// Track the tuple (request_id, stream) for each request
let mut in_flights =
HashMap::<u64, GenerationContext>::with_capacity(max_inflight_requests * 2);
// TODO: Does it need a spin-loop?
'scheduler: loop {
// Is there any request pending to be scheduled?
let awaiting_requests = waiting_requests.len();
let awaiting_requests = backlog.len();
for _ in 0..awaiting_requests {
// Retrieve all the requests
if let Some(mut ctx) = waiting_requests.blocking_recv() {
if let Some(ctx) = backlog.blocking_recv() {
// Submit all the request to the executor and move the context to the in-flight tracker
let request = &ctx.request;
let generation_params = &request.parameters;
@ -93,7 +84,7 @@ fn executor_status_looper(
match backend.pin_mut().submit(
&input_ids.unwrap(), // This is checked beforehand in validate()
stopping_params.max_new_tokens,
generation_params.top_k as i32,
generation_params.top_k,
generation_params.top_p,
generation_params.temperature,
generation_params.repetition_penalty,
@ -103,7 +94,6 @@ fn executor_status_looper(
Ok(request_id) => {
// Insert the context linked to the generated request id in the tracker
debug!("[in-flight] Added {}", request_id);
ctx.start = Some(Instant::now());
in_flights.insert(request_id, ctx);
}
Err(e) => {
@ -117,29 +107,40 @@ fn executor_status_looper(
}
}
};
} else {
break 'scheduler;
}
}
if backend.num_responses_ready() > 0 {
match backend.pin_mut().pull_tokens() {
if backend.num_tokens_ready() > 0 {
let mut backend = backend.pin_mut();
match backend.as_mut().pull_tokens() {
Ok(responses) => {
// Iterate through all the decoded token
for step in responses.deref() {
if let Some(ctx) = in_flights.get(&step.request_id) {
// Remove from tracked requests
let parcel =
DecodedToken::try_from(step).map(|dt| DecodedTokenContext {
token: dt,
start: ctx.start,
queued: ctx.queued,
channel: ctx.streamer.clone(),
});
if let Some(ctx) = in_flights.get_mut(&step.request_id) {
// Update the starting timestamp if not set
// This value might not be the actual real starting time of the request
// on the executor side - Need to expose more info from the executor to
// retrieve this value
// TODO : Expose actual real starting time for a request on FFI layer
if ctx.start.is_none() {
ctx.start = Some(Instant::now());
}
// Submit the work to p:the post_processor
let posted = post_processor_sender.send((step.request_id, parcel));
// Try to map the generation step to a DecodedToken
let response = match DecodedToken::try_from(step) {
Ok(decoded_token) => {
post_process_decoded_token(&tokenizer, ctx, decoded_token)
}
Err(err) => Err(err)
};
if posted.is_err() || step.is_final {
debug!("Removing {}", step.request_id);
// Attempt to send back the response to the client
if let Err(_) = ctx.streamer.send(response) {
// Client has dropped, remove from tracked requests
debug!("Client dropped - removing request {} from tracked requests", step.request_id);
backend.as_mut().cancel(step.request_id);
let _ = in_flights.remove(&step.request_id);
}
} else {
@ -159,80 +160,48 @@ fn executor_status_looper(
}
}
fn post_processor_looper<const MAX_NUM_TOKENS: usize>(
tokenizer: Tokenizer,
max_inflight_requests: usize,
mut decoded_tokens: UnboundedReceiver<(u64, InferResult<DecodedTokenContext>)>,
) {
let mut states: HashMap<u64, Vec<u32>> = HashMap::with_capacity(max_inflight_requests * 2);
fn post_process_decoded_token(tokenizer: &Tokenizer, ctx: &mut GenerationContext, decoded_token: DecodedToken) -> InferResult<InferStreamResponse> {
match tokenizer.decode(&[decoded_token.id], false) {
Ok(text) => {
let is_special =
tokenizer.get_added_vocabulary().is_special_token(&text);
let token = Token {
id: decoded_token.id,
text,
logprob: decoded_token.log_prob,
special: is_special,
};
'post_processor: loop {
if decoded_tokens.is_closed() {
warn!("Post processor IPC is closed, loop will exit now.");
break 'post_processor;
}
// Append the token to the tracked generated tokens
ctx.tokens.push(token.id);
if let Some((request_id, decoded)) = decoded_tokens.blocking_recv() {
match decoded {
Ok(ctx) => {
states
.entry(request_id)
.and_modify(|s| s.push(*&ctx.token.id))
.or_insert_with(|| {
let mut state = Vec::with_capacity(MAX_NUM_TOKENS);
state.push(*&ctx.token.id);
state
});
let out = match tokenizer.decode(&[ctx.token.id], false) {
Ok(text) => {
let is_special =
tokenizer.get_added_vocabulary().is_special_token(&text);
let token = Token {
id: ctx.token.id,
text,
logprob: ctx.token.log_prob,
special: is_special,
};
let out = if !ctx.token.is_final {
InferStreamResponse::Intermediate {
token,
top_tokens: vec![],
}
} else {
let tokens = states.remove(&request_id).unwrap();
let text = tokenizer.decode(&tokens, true);
let generated_text = GeneratedText {
text: text.unwrap(),
generated_tokens: tokens.len() as u32,
finish_reason: FinishReason::EndOfSequenceToken,
seed: None,
};
InferStreamResponse::End {
token,
top_tokens: vec![],
generated_text,
start: ctx.start.unwrap(),
queued: ctx.queued,
}
};
Ok(out)
}
Err(err) => Err(GenerationError(err.to_string())),
};
if let Err(_) = ctx.channel.send(out) {
warn!("Failed to send decoded token back to the user")
}
// Map the correct response depending on the step is final or not
let out = if !decoded_token.is_final {
InferStreamResponse::Intermediate {
token,
top_tokens: vec![],
}
Err(_err) => {
todo!("what do we do?")
} else {
let text = tokenizer.decode(&ctx.tokens, true);
let generated_text = GeneratedText {
text: text.unwrap(),
generated_tokens: ctx.tokens.len() as u32,
finish_reason: FinishReason::EndOfSequenceToken, // TODO : Map FinishReason
seed: None,
};
InferStreamResponse::End {
token,
top_tokens: vec![],
generated_text,
start: ctx.start.unwrap(),
queued: ctx.queued,
}
}
};
Ok(out)
}
Err(err) => Err(GenerationError(err.to_string())),
}
}
@ -277,11 +246,8 @@ fn ensure_paths_exist<P: AsRef<Path>, PP: AsRef<Path>>(
unsafe impl Send for TensorRtLlmBackendImpl {}
pub struct TensorRtLlmBackendV2 {
executor_looper: JoinHandle<()>,
post_processor_looper: JoinHandle<()>,
executor: UnboundedSender<GenerationContext>,
}
pub struct TensorRtLlmBackendV2(UnboundedSender<GenerationContext>);
impl TensorRtLlmBackendV2 {
pub fn new<P: AsRef<Path> + Send, PP: AsRef<Path> + Send>(
@ -295,32 +261,22 @@ impl TensorRtLlmBackendV2 {
// Allocate the IPC layer to communicate with the backend
let (executor_sender, executor_receiver) = unbounded_channel();
let (post_processor_sender, post_processor_receiver) = unbounded_channel();
// Create the FFI backend
let backend = create_tensorrt_llm_backend(&engine_folder, &executor_worker_path)
let backend = create_backend_from_engine_folder(&engine_folder, &executor_worker_path)
.map_err(|e| TensorRtLlmBackendError::Runtime(first_line(e.what(), "Unknown error")))?;
// Executor looper is responsible for scheduling and pulling requests state at regular interval
let executor_looper = spawn_blocking(move || {
spawn_blocking(move || {
executor_status_looper(
backend,
max_inflight_requests,
tokenizer,
backend,
executor_receiver,
post_processor_sender,
)
});
// Post processor looper is responsible from receiving a bunch of tokens, decoding them and sending them back to the user
let post_processor_looper = spawn_blocking(move || {
post_processor_looper::<256>(tokenizer, max_inflight_requests, post_processor_receiver)
});
Ok(TensorRtLlmBackendV2 {
executor_looper,
post_processor_looper,
executor: executor_sender,
})
Ok(TensorRtLlmBackendV2(executor_sender))
}
fn validate(request: &ValidGenerateRequest) -> InferResult<()> {
@ -354,20 +310,21 @@ impl TensorRtLlmBackendV2 {
impl Backend for TensorRtLlmBackendV2 {
fn schedule(
&self,
inner: ValidGenerateRequest,
request: ValidGenerateRequest,
) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
Self::validate(&inner)?;
Self::validate(&request)?;
// Open-up the stream to send tokens
let (streamer, receiver) = unbounded_channel::<InferResult<InferStreamResponse>>();
// Send the context to the executor for scheduling
let queued = Instant::now();
match self.executor.send(GenerationContext {
request: inner,
match self.0.send(GenerationContext {
request,
streamer,
tokens: Vec::with_capacity(256),
start: None,
queued,
streamer,
}) {
Ok(_) => Ok(UnboundedReceiverStream::new(receiver)),
Err(_) => Err(GenerationError(
@ -377,6 +334,6 @@ impl Backend for TensorRtLlmBackendV2 {
}
async fn health(&self, _: bool) -> bool {
!self.executor_looper.is_finished() & !self.post_processor_looper.is_finished()
true
}
}

View File

@ -3,14 +3,13 @@ use std::path::{Path, PathBuf};
use clap::Parser;
use hf_hub::api::tokio::{Api, ApiBuilder};
use hf_hub::{Cache, Repo, RepoType};
use tokenizers::Tokenizer;
use tracing::info;
use text_generation_backends_trtllm::errors::TensorRtLlmBackendError;
use text_generation_backends_trtllm::TensorRtLlmBackendV2;
use text_generation_router::server::get_base_tokenizer;
use text_generation_router::usage_stats::UsageStatsLevel;
use text_generation_router::{server, HubTokenizerConfig};
use text_generation_router::{server, HubTokenizerConfig, Tokenizer};
use text_generation_router::server::{get_hub_model_info, legacy_tokenizer_handle, py_resolve_tokenizer};
/// App Configuration
#[derive(Parser, Debug)]
@ -61,7 +60,7 @@ struct Args {
#[clap(long, env, help = "Path to the TensorRT-LLM Orchestrator worker")]
executor_worker: PathBuf,
#[clap(default_value = "on", long, env)]
usage_stats: usage_stats::UsageStatsLevel,
usage_stats: UsageStatsLevel,
#[clap(default_value = "2000000", long, env)]
payload_limit: usize,
}
@ -126,18 +125,18 @@ async fn get_tokenizer(
// Load tokenizer and model info
let (
tokenizer_filename,
_config_filename,
tokenizer_config_filename,
config_filename,
_tokenizer_config_filename,
_preprocessor_config_filename,
_processor_config_filename,
_model_info
) = match api {
Type::None => (
Some(local_path.join("tokenizer.json")),
Some(local_path.join("config.json")),
Some(local_path.join("tokenizer_config.json")),
Some(local_path.join("preprocessor_config.json")),
Some(local_path.join("processor_config.json")),
None
),
Type::Api(api) => {
let api_repo = api.repo(Repo::with_revision(
@ -146,21 +145,24 @@ async fn get_tokenizer(
revision.unwrap_or_else(|| "main").to_string(),
));
let tokenizer_filename = match api_repo.get("tokenizer.json").await {
Ok(tokenizer_filename) => Some(tokenizer_filename),
Err(_) => get_base_tokenizer(&api, &api_repo).await,
};
let config_filename = api_repo.get("config.json").await.ok();
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
let processor_config_filename = api_repo.get("processor_config.json").await.ok();
let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
Some(model_info)
} else {
tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
None
};
(
tokenizer_filename,
config_filename,
tokenizer_config_filename,
preprocessor_config_filename,
processor_config_filename,
model_info,
)
}
Type::Cache(cache) => {
@ -170,24 +172,55 @@ async fn get_tokenizer(
revision.clone().unwrap_or_else(|| "main").to_string(),
));
(
repo.get("tokenizer.json"),
repo.get("config.json"),
repo.get("tokenizer_config.json"),
repo.get("preprocessor_config.json"),
repo.get("processor_config.json"),
None
)
}
};
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
{
HubTokenizerConfig::from_file(filename)
} else {
tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
// let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
// {
// HubTokenizerConfig::from_file(filename)
// } else {
// tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
// };
// let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
// tracing::warn!("Could not find tokenizer config locally and no API specified");
// HubTokenizerConfig::default()
// });
let tokenizer: Tokenizer = {
use pyo3::prelude::*;
pyo3::Python::with_gil(|py| -> PyResult<()> {
py_resolve_tokenizer(py, &tokenizer_name, revision.as_deref(), false)?;
Ok(())
})
.inspect_err(|err| {
tracing::error!("Failed to import python tokenizer {err}");
})
.or_else(|err| {
let out = legacy_tokenizer_handle(config_filename.as_ref());
out.ok_or(err)
})
.expect("We cannot load a tokenizer");
let filename = "out/tokenizer.json";
if let Ok(tok) = tokenizers::Tokenizer::from_file(filename) {
Tokenizer::Rust(tok)
} else {
Tokenizer::Python {
tokenizer_name: tokenizer_name.to_string(),
revision: revision.map(|revision| revision.to_string()),
trust_remote_code: false,
}
}
};
tokenizer_filename.and_then(|filename| Tokenizer::from_file(filename).ok())
Some(tokenizer)
}
#[tokio::main]
@ -258,50 +291,55 @@ async fn main() -> Result<(), TensorRtLlmBackendError> {
}
// Create the backend
let tokenizer = get_tokenizer(
match get_tokenizer(
&tokenizer_name,
tokenizer_config_path.as_deref(),
revision.as_deref(),
)
.await
.expect("Failed to retrieve tokenizer implementation");
.expect("Failed to retrieve tokenizer implementation") {
Tokenizer::Python { .. } => {
Err(TensorRtLlmBackendError::Tokenizer("Failed to retrieve Rust based tokenizer".to_string()))
}
Tokenizer::Rust(tokenizer) => {
info!("Successfully retrieved tokenizer {}", &tokenizer_name);
let backend = TensorRtLlmBackendV2::new(
tokenizer,
model_id,
executor_worker,
max_concurrent_requests,
)?;
info!("Successfully retrieved tokenizer {}", &tokenizer_name);
let backend = TensorRtLlmBackendV2::new(
tokenizer,
model_id,
executor_worker,
max_concurrent_requests,
)?;
info!("Successfully created backend");
info!("Successfully created backend");
// Run server
server::run(
backend,
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_tokens,
max_total_tokens,
validation_workers,
auth_token,
tokenizer_name,
tokenizer_config_path,
revision,
false,
hostname,
port,
cors_allow_origin,
false,
None,
None,
true,
max_client_batch_size,
usage_stats,
payload_limit,
).await?;
Ok(())
}
}
// Run server
server::run(
backend,
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_tokens,
max_total_tokens,
validation_workers,
auth_token,
tokenizer_name,
tokenizer_config_path,
revision,
false,
hostname,
port,
cors_allow_origin,
false,
None,
None,
true,
max_client_batch_size,
usage_stats,
payload_limit,
)
.await?;
Ok(())
}

View File

@ -1,14 +0,0 @@
//
// Created by mfuntowicz on 7/2/24.
//
#include <catch2/catch_all.hpp>
#include <spdlog/spdlog.h>
#include "../include/backend.h"
TEST_CASE("Load TRTLLM Engine on the TGI Backend", "[trtllm][engine][load]") {
const auto engines = std::filesystem::path("/home/mfuntowicz/.cache/huggingface/assets/trtllm/0.11.0.dev2024062500/meta-llama--Meta-Llama-3-8B-Instruct/4090/engines/");
const auto executor = std::filesystem::path("/home/mfuntowicz/Workspace/text-generation-inference/backends/trtllm/cmake-build-debug/cmake-build-debug/_deps/trtllm-src/cpp/tensorrt_llm/executor_worker/executorWorker");
spdlog::info("Loading config from: {}", absolute(engines).string());
huggingface::tgi::backends::TensorRtLlmBackend backend(engines, executor);
}

View File

@ -0,0 +1,152 @@
//
// Created by mfuntowicz on 12/3/24.
//
#include <catch2/catch_all.hpp>
#include <nlohmann/json.hpp>
#include <tensorrt_llm/executor/executor.h>
#include "backend.hpp"
using namespace huggingface::tgi::backends::trtllm;
TEST_CASE("parse generation_config.json all set", "[generation_config_t]")
{
const json config_j = {{"temperature", 0.6}, {"top_p", 0.95}, {"eos_token_id", {1,2,3}}};
const auto generation_config = generation_config_t(config_j);
REQUIRE_THAT(generation_config.temperature, Catch::Matchers::WithinAbs(0.6, 1e-6));
REQUIRE_THAT(generation_config.top_p, Catch::Matchers::WithinAbs(0.95, 1e-6));
// Stop words
REQUIRE_FALSE(generation_config.stop_words.empty());
REQUIRE(generation_config.stop_words.size() == config_j["/eos_token_id"_json_pointer].size());
for (auto [lhs, rhs] : std::views::zip(generation_config.stop_words, std::list<std::vector<int32_t>>{{1}, {2}, {3}}))
{
// Currently we do not support multi-tokens stop words
REQUIRE(lhs.size() == 1);
REQUIRE(rhs.size() == 1);
REQUIRE_THAT(lhs, Catch::Matchers::UnorderedEquals(rhs));
}
}
TEST_CASE("parse generation_config.json default", "[generation_config_t]")
{
const json config_j = {{"eos_token_id", {1,2,3}}};
const auto generation_config = generation_config_t(config_j);
REQUIRE_THAT(generation_config.temperature, Catch::Matchers::WithinAbs(1.0, 1e-6));
REQUIRE_THAT(generation_config.top_p, Catch::Matchers::WithinAbs(1.0, 1e-6));
REQUIRE_FALSE(generation_config.stop_words.empty());
REQUIRE(generation_config.stop_words.size() == config_j["/eos_token_id"_json_pointer].size());
for (auto [lhs, rhs] : std::views::zip(generation_config.stop_words, std::list<std::vector<int32_t>>{{1}, {2}, {3}}))
{
// Currently we do not support multi-tokens stop words
REQUIRE(lhs.size() == 1);
REQUIRE(rhs.size() == 1);
REQUIRE_THAT(lhs, Catch::Matchers::UnorderedEquals(rhs));
}
}
TEST_CASE("parse generation_config.json empty", "[generation_config_t]")
{
const json config_j = {{"eos_token_id", {}}};
const auto generation_config = generation_config_t(config_j);
REQUIRE_THAT(generation_config.temperature, Catch::Matchers::WithinAbs(1.0, 1e-6));
REQUIRE_THAT(generation_config.top_p, Catch::Matchers::WithinAbs(1.0, 1e-6));
REQUIRE(generation_config.stop_words.empty());
const json config_j2 = {};
const auto generation_config2 = generation_config_t(config_j);
REQUIRE_THAT(generation_config2.temperature, Catch::Matchers::WithinAbs(1.0, 1e-6));
REQUIRE_THAT(generation_config2.top_p, Catch::Matchers::WithinAbs(1.0, 1e-6));
REQUIRE(generation_config2.stop_words.empty());
}
TEST_CASE("parallel_config single", "[backend_workspace_t]")
{
// Generate temporary folder
const auto tmp_p = std::filesystem::temp_directory_path();
const auto config_p = tmp_p / "config.json";
const auto generation_config_p = tmp_p / "generation_config.json";
// Generate content
std::ofstream o_config(config_p);
o_config << R"({"pretrained_config": {"mapping": {"world_size": 2}}})"_json;
o_config.close();
std::ofstream o_generation_config(generation_config_p);
o_generation_config << R"({"eos_token_id": []})"_json;
o_generation_config.close();
const auto workspace = backend_workspace_t(tmp_p.generic_string(), tmp_p.generic_string());
const auto parallel = workspace.parallel_config();
REQUIRE(parallel.getCommunicationMode() == tle::CommunicationMode::kORCHESTRATOR);
REQUIRE(parallel.getCommunicationType() == tle::CommunicationType::kMPI);
std::filesystem::remove(config_p);
std::filesystem::remove(generation_config_p);
}
TEST_CASE("parallel_config multi", "[backend_workspace_t]")
{
// Generate temporary folder
const auto tmp_p = std::filesystem::temp_directory_path();
const auto config_p = tmp_p / "config.json";
const auto generation_config_p = tmp_p / "generation_config.json";
// Generate content
std::ofstream o_config(config_p);
o_config << R"({"pretrained_config": {"mapping": {"world_size": 1}}})"_json;
o_config.close();
std::ofstream o_generation_config(generation_config_p);
o_generation_config << R"({"eos_token_id": []})"_json;
o_generation_config.close();
const auto workspace = backend_workspace_t(tmp_p.generic_string(), tmp_p.generic_string());
const auto parallel = workspace.parallel_config();
REQUIRE(parallel.getCommunicationMode() == tle::CommunicationMode::kLEADER);
REQUIRE(parallel.getCommunicationType() == tle::CommunicationType::kMPI);
std::filesystem::remove(config_p);
std::filesystem::remove(generation_config_p);
}
TEST_CASE("executor_config", "[backend_workspace_t]")
{
}
TEST_CASE("sampling_params_t to tle::SamplingConfig", "[backend_t]")
{
const sampling_params_t params = {40, 0.95, 0.9, 1.0, 0.6, 2014};
const auto config = static_cast<tle::SamplingConfig>(params);
REQUIRE(config.getTopK().has_value());
REQUIRE(config.getTopK().value() == params.top_k);
REQUIRE(config.getSeed().has_value());
REQUIRE(config.getSeed().value() == params.seed);
REQUIRE(config.getTopP().has_value());
REQUIRE_THAT(*config.getTopP(), Catch::Matchers::WithinAbs(params.top_p, 1e-6f));
REQUIRE(config.getRepetitionPenalty().has_value());
REQUIRE_THAT(*config.getRepetitionPenalty(), Catch::Matchers::WithinAbs(params.repetition_penalty, 1e-6f));
REQUIRE(config.getFrequencyPenalty().has_value());
REQUIRE_THAT(*config.getFrequencyPenalty(), Catch::Matchers::WithinAbs(params.frequency_penalty, 1e-6f));
REQUIRE(config.getTemperature().has_value());
REQUIRE_THAT(*config.getTemperature(), Catch::Matchers::WithinAbs(params.temperature, 1e-6f));
}

View File

@ -0,0 +1,82 @@
//
// Created by mfuntowicz on 11/16/24.
//
#include <catch2/catch_all.hpp>
#include "../csrc/hardware.hpp"
using namespace huggingface::tgi::hardware::cuda;
TEST_CASE("is_at_least_<arch>") {
const static auto VOLTA_CAPABILITIES = compute_capabilities_t(7, 0);
REQUIRE(VOLTA_CAPABILITIES.is_at_least_volta());
REQUIRE_FALSE(VOLTA_CAPABILITIES.is_at_least_turing());
REQUIRE_FALSE(VOLTA_CAPABILITIES.is_at_least_ampere());
REQUIRE_FALSE(VOLTA_CAPABILITIES.is_at_least_ada_lovelace());
REQUIRE_FALSE(VOLTA_CAPABILITIES.is_at_least_hopper());
const static auto TURING_CAPABILITIES = compute_capabilities_t(7, 5);
REQUIRE(TURING_CAPABILITIES.is_at_least_volta());
REQUIRE(TURING_CAPABILITIES.is_at_least_turing());
REQUIRE_FALSE(TURING_CAPABILITIES.is_at_least_ampere());
REQUIRE_FALSE(TURING_CAPABILITIES.is_at_least_ada_lovelace());
REQUIRE_FALSE(TURING_CAPABILITIES.is_at_least_hopper());
const static auto AMPERE_CAPABILITIES = compute_capabilities_t(8, 0);
REQUIRE(AMPERE_CAPABILITIES.is_at_least_volta());
REQUIRE(AMPERE_CAPABILITIES.is_at_least_turing());
REQUIRE(AMPERE_CAPABILITIES.is_at_least_ampere());
REQUIRE_FALSE(AMPERE_CAPABILITIES.is_at_least_ada_lovelace());
REQUIRE_FALSE(AMPERE_CAPABILITIES.is_at_least_hopper());
const static auto ADA_LOVELACE_CAPABILITIES = compute_capabilities_t(8, 9);
REQUIRE(ADA_LOVELACE_CAPABILITIES.is_at_least_volta());
REQUIRE(ADA_LOVELACE_CAPABILITIES.is_at_least_turing());
REQUIRE(ADA_LOVELACE_CAPABILITIES.is_at_least_ampere());
REQUIRE(ADA_LOVELACE_CAPABILITIES.is_at_least_ada_lovelace());
REQUIRE_FALSE(ADA_LOVELACE_CAPABILITIES.is_at_least_hopper());
const static auto HOPPER_CAPABILITIES = compute_capabilities_t(9, 0);
REQUIRE(HOPPER_CAPABILITIES.is_at_least_volta());
REQUIRE(HOPPER_CAPABILITIES.is_at_least_turing());
REQUIRE(HOPPER_CAPABILITIES.is_at_least_ampere());
REQUIRE(HOPPER_CAPABILITIES.is_at_least_ada_lovelace());
REQUIRE(HOPPER_CAPABILITIES.is_at_least_hopper());
}
TEST_CASE("is_at_least") {
const static auto VOLTA_CAPABILITIES = compute_capabilities_t(7, 0);
REQUIRE(VOLTA_CAPABILITIES.is_at_least(VOLTA));
REQUIRE_FALSE(VOLTA_CAPABILITIES.is_at_least(TURING));
REQUIRE_FALSE(VOLTA_CAPABILITIES.is_at_least(AMPERE));
REQUIRE_FALSE(VOLTA_CAPABILITIES.is_at_least(ADA_LOVELACE));
REQUIRE_FALSE(VOLTA_CAPABILITIES.is_at_least(HOPPER));
const static auto TURING_CAPABILITIES = compute_capabilities_t(7, 5);
REQUIRE(TURING_CAPABILITIES.is_at_least(VOLTA));
REQUIRE(TURING_CAPABILITIES.is_at_least(TURING));
REQUIRE_FALSE(TURING_CAPABILITIES.is_at_least(AMPERE));
REQUIRE_FALSE(TURING_CAPABILITIES.is_at_least(ADA_LOVELACE));
REQUIRE_FALSE(TURING_CAPABILITIES.is_at_least(HOPPER));
const static auto AMPERE_CAPABILITIES = compute_capabilities_t(8, 0);
REQUIRE(AMPERE_CAPABILITIES.is_at_least(VOLTA));
REQUIRE(AMPERE_CAPABILITIES.is_at_least(TURING));
REQUIRE(AMPERE_CAPABILITIES.is_at_least(AMPERE));
REQUIRE_FALSE(AMPERE_CAPABILITIES.is_at_least(ADA_LOVELACE));
REQUIRE_FALSE(AMPERE_CAPABILITIES.is_at_least(HOPPER));
const static auto ADA_LOVELACE_CAPABILITIES = compute_capabilities_t(8, 9);
REQUIRE(ADA_LOVELACE_CAPABILITIES.is_at_least(VOLTA));
REQUIRE(ADA_LOVELACE_CAPABILITIES.is_at_least(TURING));
REQUIRE(ADA_LOVELACE_CAPABILITIES.is_at_least(AMPERE));
REQUIRE(ADA_LOVELACE_CAPABILITIES.is_at_least(ADA_LOVELACE));
REQUIRE_FALSE(ADA_LOVELACE_CAPABILITIES.is_at_least(HOPPER));
const static auto HOPPER_CAPABILITIES = compute_capabilities_t (9, 0);
REQUIRE(HOPPER_CAPABILITIES.is_at_least(VOLTA));
REQUIRE(HOPPER_CAPABILITIES.is_at_least(TURING));
REQUIRE(HOPPER_CAPABILITIES.is_at_least(AMPERE));
REQUIRE(HOPPER_CAPABILITIES.is_at_least(ADA_LOVELACE));
REQUIRE(HOPPER_CAPABILITIES.is_at_least(HOPPER));
}

View File

@ -17,6 +17,8 @@
title: Using TGI with Intel GPUs
- local: installation
title: Installation from source
- local: multi_backend_support
title: Multi-backend support
- local: architecture
title: Internal Architecture
@ -45,6 +47,10 @@
- local: basic_tutorials/train_medusa
title: Train Medusa
title: Tutorials
- sections:
- local: backends/trtllm
title: TensorRT-LLM
title: Backends
- sections:
- local: reference/launcher
title: All TGI CLI options

View File

@ -9,8 +9,10 @@ A high-level architecture diagram can be seen here:
This diagram shows well there are these separate components:
- **The router**, also named `webserver`, that receives the client requests, buffers them, creates some batches, and prepares gRPC calls to a model server.
- **The model server**, responsible of receiving the gRPC requests and to process the inference on the model. If the model is sharded across multiple accelerators (e.g.: multiple GPUs), the model server shards might be synchronized via NCCL or equivalent.
- **The launcher** is a helper that will be able to launch one or several model servers (if model is sharded), and it launches the router with the compatible arguments.
- **The model server**, responsible for receiving the gRPC requests and to process the inference on the model. If the model is sharded across multiple accelerators (e.g.: multiple GPUs), the model server shards might be synchronized via NCCL or equivalent.
Note that for other backends (eg. TRTLLM) the model server and launcher are specific to the backend.
The router and the model server can be two different machines, they do not need to be deployed together.

View File

@ -0,0 +1,81 @@
# TensorRT-LLM backend
The NVIDIA TensorRT-LLM (TRTLLM) backend is a high-performance backend for LLMs
that uses NVIDIA's TensorRT library for inference acceleration.
It makes use of specific optimizations for NVIDIA GPUs, such as custom kernels.
To use the TRTLLM backend you need to compile `engines` for the models you want to use.
Each `engine` must be compiled on the same GPU architecture that you will use for inference.
## Supported models
Check the [support matrix](https://nvidia.github.io/TensorRT-LLM/reference/support-matrix.html) to see which models are
supported.
## Compiling engines
You can use [Optimum-NVIDIA](https://github.com/huggingface/optimum-nvidia) to compile engines for the models you
want to use.
```bash
MODEL_NAME="meta-llama/Llama-3.1-8B-Instruct"
# Install huggingface_cli
python -m pip install huggingface-cli[hf_transfer]
# Login to the Hugging Face Hub
huggingface-cli login
# Create a directory to store the model
mkdir -p /tmp/models/$MODEL_NAME
# Create a directory to store the compiled engine
mkdir -p /tmp/engines/$MODEL_NAME
# Download the model
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download --local-dir /tmp/models/$MODEL_NAME $MODEL_NAME
# Compile the engine using Optimum-NVIDIA
docker run \
--rm \
-it \
--gpus=1 \
-v /tmp/models/$MODEL_NAME:/model \
-v /tmp/engines/$MODEL_NAME:/engine \
huggingface/optimum-nvidia \
optimum-cli export trtllm \
--tp=1 \
--pp=1 \
--max-batch-size=128 \
--max-input-length 4096 \
--max-output-length 8192 \
--max-beams-width=1 \
--destination /engine \
$MODEL_NAME
```
Your compiled engine will be saved in the `/tmp/engines/$MODEL_NAME` directory.
## Using the TRTLLM backend
Run TGI-TRTLLM Docker image with the compiled engine:
```bash
docker run \
--gpus 1 \
-it \
--rm \
-p 3000:3000 \
-e MODEL=$MODEL_NAME \
-e PORT=3000 \
-e HF_TOKEN='hf_XXX' \
-v /tmp/engines/$MODEL_NAME:/data \
ghcr.io/huggingface/text-generation-inference:latest-trtllm \
--executor-worker executorWorker \
--model-id /data/$MODEL_NAME
```
## Development
To develop TRTLLM backend, you can use [dev containers](https://containers.dev/) located in
`.devcontainer` directory.

View File

@ -0,0 +1,13 @@
# Multi-backend support
TGI (Text Generation Inference) offers flexibility by supporting multiple backends for serving large language models (LLMs).
With multi-backend support, you can choose the backend that best suits your needs,
whether you prioritize performance, ease of use, or compatibility with specific hardware. API interaction with
TGI remains consistent across backends, allowing you to switch between them seamlessly.
**Supported backends:**
* **TGI CUDA backend**: This high-performance backend is optimized for NVIDIA GPUs and serves as the default option
within TGI. Developed in-house, it boasts numerous optimizations and is used in production by various projects, including those by Hugging Face.
* **[TGI TRTLLM backend](./backends/trtllm)**: This backend leverages NVIDIA's TensorRT library to accelerate LLM inference.
It utilizes specialized optimizations and custom kernels for enhanced performance.
However, it requires a model-specific compilation step for each GPU architecture.

View File

@ -1593,7 +1593,7 @@ pub fn schema() -> ApiDoc {
ApiDoc
}
fn py_resolve_tokenizer(
pub fn py_resolve_tokenizer(
py: pyo3::Python,
tokenizer_name: &str,
revision: Option<&str>,
@ -1619,7 +1619,7 @@ fn py_resolve_tokenizer(
Ok(())
}
fn legacy_tokenizer_handle(config_filename: Option<&PathBuf>) -> Option<()> {
pub fn legacy_tokenizer_handle(config_filename: Option<&PathBuf>) -> Option<()> {
// XXX Legacy case for FasterDecoding/medusa-vicuna-7b-v1.3
// and state-spaces/mamba-130m
tracing::warn!("Odd tokenizer detected, falling back on legacy tokenization");