enable bfloat16 for cpu (#1034)
if there's no cuda. disable custom kernels # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
This commit is contained in:
parent
c8a01d7591
commit
eeaa22ab04
|
@ -153,7 +153,7 @@ def get_model(
|
|||
)
|
||||
elif model_type == "mpt":
|
||||
return MPTSharded(
|
||||
model_id, revision, quantize=quantize, trust_remote_code=trust_remote_code
|
||||
model_id, revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code
|
||||
)
|
||||
|
||||
elif model_type == "gpt_neox":
|
||||
|
|
|
@ -51,7 +51,7 @@ class BLOOMSharded(CausalLM):
|
|||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
|
|
|
@ -492,7 +492,7 @@ class CausalLM(Model):
|
|||
raise ValueError("quantization is not available on CPU")
|
||||
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
|
|
|
@ -40,7 +40,7 @@ from text_generation_server.utils.layers import (
|
|||
)
|
||||
|
||||
CUSTOM_KERNELS_ENABLED = False
|
||||
if not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True":
|
||||
if torch.cuda.is_available() and not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True":
|
||||
try:
|
||||
from custom_kernels import fused_bloom_attention_cuda
|
||||
|
||||
|
|
|
@ -49,7 +49,7 @@ from text_generation_server.utils.layers import (
|
|||
|
||||
|
||||
CUSTOM_KERNELS_ENABLED = False
|
||||
if not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True":
|
||||
if torch.cuda.is_available() and not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True":
|
||||
try:
|
||||
from custom_kernels import fused_attention_cuda
|
||||
|
||||
|
|
|
@ -167,7 +167,7 @@ class GalacticaSharded(CausalLM):
|
|||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
|
|
|
@ -33,7 +33,7 @@ class GPTNeoxSharded(CausalLM):
|
|||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
|
|
|
@ -42,7 +42,7 @@ class IDEFICSSharded(IdeficsCausalLM):
|
|||
dtype = torch.bfloat16 if dtype is None else dtype
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
self.device, self.dtype = device, dtype
|
||||
|
||||
config = IdeficsConfig.from_pretrained(
|
||||
|
|
|
@ -560,7 +560,7 @@ class IdeficsCausalLM(Model):
|
|||
raise ValueError("quantization is not available on CPU")
|
||||
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
|
|
|
@ -43,14 +43,16 @@ class MPTSharded(CausalLM):
|
|||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
trust_remote_code: bool = False,
|
||||
):
|
||||
self.process_group, rank, world_size = initialize_torch_distributed()
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
dtype = torch.float16
|
||||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
raise NotImplementedError("MPTSharded is only available on GPU")
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
|
|
|
@ -31,7 +31,7 @@ class OPTSharded(CausalLM):
|
|||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
|
|
|
@ -23,7 +23,7 @@ class RW(CausalLM):
|
|||
raise ValueError("quantization is not available on CPU")
|
||||
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
|
|
|
@ -30,7 +30,7 @@ class SantaCoder(CausalLM):
|
|||
raise ValueError("quantization is not available on CPU")
|
||||
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
|
|
|
@ -541,7 +541,7 @@ class Seq2SeqLM(Model):
|
|||
raise ValueError("quantization is not available on CPU")
|
||||
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_id,
|
||||
|
|
|
@ -34,7 +34,7 @@ class T5Sharded(Seq2SeqLM):
|
|||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_id,
|
||||
|
|
Loading…
Reference in New Issue