parent
762dbf3f19
commit
f04255c694
|
@ -71,6 +71,7 @@ try:
|
|||
from text_generation_server.models.flash_mixtral import FlashMixtral
|
||||
from text_generation_server.models.flash_phi import FlashPhi
|
||||
from text_generation_server.models.flash_starcoder2 import FlashStarcoder2
|
||||
from text_generation_server.models.flash_dbrx import FlashDbrx
|
||||
from text_generation_server.utils.flash_attn import HAS_FLASH_ATTN_V2_CUDA
|
||||
|
||||
except ImportError as e:
|
||||
|
@ -86,6 +87,7 @@ if FLASH_ATTENTION:
|
|||
__all__.append(IDEFICSSharded)
|
||||
__all__.append(FlashMistral)
|
||||
__all__.append(FlashMixtral)
|
||||
__all__.append(FlashDbrx)
|
||||
__all__.append(FlashPhi)
|
||||
__all__.append(FlashQwen2)
|
||||
__all__.append(FlashStarcoder2)
|
||||
|
@ -381,6 +383,28 @@ def get_model(
|
|||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
if model_type == "dbrx":
|
||||
if FLASH_ATTENTION:
|
||||
return FlashDbrx(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
use_medusa=use_medusa,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
|
||||
else:
|
||||
return CausalLM(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
use_medusa=use_medusa,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
if model_type in ["RefinedWeb", "RefinedWebModel", "falcon"]:
|
||||
if sharded:
|
||||
if FLASH_ATTENTION:
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -552,6 +552,7 @@ class BlockSparseMoE(nn.Module):
|
|||
|
||||
# Re-normalize
|
||||
weights = all_probs / all_probs.sum(dim=1, keepdim=True)
|
||||
weights = weights.to(x.dtype)
|
||||
|
||||
# Expand to [num_experts, sequence_length, model_dim]
|
||||
x = x.view(1, -1, input_shape[-1]).expand(self.num_experts, -1, input_shape[-1])
|
||||
|
@ -660,6 +661,7 @@ class DenseMoE(nn.Module):
|
|||
|
||||
# Re-normalize
|
||||
weights = all_probs / all_probs.sum(dim=1, keepdim=True)
|
||||
weights = weights.to(x.dtype)
|
||||
|
||||
# Final output tensor
|
||||
out = x.new_zeros(x.shape[0], self.hidden_dim)
|
||||
|
|
|
@ -0,0 +1,99 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from opentelemetry import trace
|
||||
from typing import Optional
|
||||
from transformers import AutoTokenizer
|
||||
from transformers.models.gpt2 import GPT2TokenizerFast
|
||||
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_dbrx_modeling import (
|
||||
FlashDbrxForCausalLM,
|
||||
DbrxConfig,
|
||||
)
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
Weights,
|
||||
)
|
||||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
class FlashDbrx(FlashCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
use_medusa: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
trust_remote_code: bool = False,
|
||||
):
|
||||
self.process_group, rank, world_size = initialize_torch_distributed()
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
dtype = torch.bfloat16 if dtype is None else dtype
|
||||
else:
|
||||
raise NotImplementedError("FlashDBRX is only available on GPU")
|
||||
|
||||
try:
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
trust_remote_code=trust_remote_code,
|
||||
use_fast=True,
|
||||
from_slow=False,
|
||||
)
|
||||
except:
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
trust_remote_code=trust_remote_code,
|
||||
use_fast=True,
|
||||
from_slow=False,
|
||||
)
|
||||
except:
|
||||
# FIXME: change back to model id once the tokenizer.json is merged
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(
|
||||
"Xenova/dbrx-instruct-tokenizer",
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
trust_remote_code=trust_remote_code,
|
||||
use_fast=True,
|
||||
from_slow=False,
|
||||
)
|
||||
|
||||
config = DbrxConfig.from_pretrained(
|
||||
model_id, revision=revision, trust_remote_code=trust_remote_code
|
||||
)
|
||||
config.quantize = quantize
|
||||
config.use_medusa = use_medusa
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
weights = Weights(filenames, device, dtype, process_group=self.process_group)
|
||||
if config.quantize in ["gptq", "awq"]:
|
||||
weights._set_gptq_params(model_id, revision)
|
||||
|
||||
model = FlashDbrxForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashDbrx, self).__init__(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
num_layers=len(model.model.layers),
|
||||
num_kv_heads=model.model.num_key_value_heads,
|
||||
head_size=model.model.head_size,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
)
|
Loading…
Reference in New Issue