feat(server): support OPT models (#55)
OPT models do not all have a `tokenizer.json` file on the hub at the moment. Can't merge for now.
This commit is contained in:
parent
299217c95c
commit
f26dfd0dc1
|
@ -54,11 +54,12 @@ to power LLMs api-inference widgets.
|
|||
## Optimized architectures
|
||||
|
||||
- [BLOOM](https://huggingface.co/bigscience/bloom)
|
||||
- [Galactica](https://huggingface.co/facebook/galactica-120b)
|
||||
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
|
||||
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
|
||||
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
|
||||
- [Galactica](https://huggingface.co/facebook/galactica-120b)
|
||||
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
|
||||
- [Llama](https://github.com/facebookresearch/llama)
|
||||
- [OPT](https://huggingface.co/facebook/opt-66b)
|
||||
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
|
||||
|
||||
Other architectures are supported on a best effort basis using:
|
||||
|
||||
|
|
|
@ -349,8 +349,8 @@ fn main() -> ExitCode {
|
|||
Err(TryRecvError::Empty) => {
|
||||
sleep(Duration::from_millis(100));
|
||||
}
|
||||
Ok(ShardStatus::Failed((rank, err))) => {
|
||||
tracing::error!("Shard {} failed to start:\n{}", rank, err);
|
||||
Ok(ShardStatus::Failed(rank)) => {
|
||||
tracing::error!("Shard {} failed to start.", rank);
|
||||
shutdown_shards(shutdown, &shutdown_receiver);
|
||||
return ExitCode::FAILURE;
|
||||
}
|
||||
|
@ -457,8 +457,8 @@ fn main() -> ExitCode {
|
|||
let mut exit_code = ExitCode::SUCCESS;
|
||||
|
||||
while running.load(Ordering::SeqCst) {
|
||||
if let Ok(ShardStatus::Failed((rank, err))) = status_receiver.try_recv() {
|
||||
tracing::error!("Shard {rank} failed:\n{err}");
|
||||
if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
|
||||
tracing::error!("Shard {rank} failed.");
|
||||
exit_code = ExitCode::FAILURE;
|
||||
break;
|
||||
};
|
||||
|
@ -488,7 +488,7 @@ fn main() -> ExitCode {
|
|||
#[derive(Debug)]
|
||||
enum ShardStatus {
|
||||
Ready,
|
||||
Failed((usize, String)),
|
||||
Failed(usize),
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
|
@ -627,9 +627,7 @@ fn shard_manager(
|
|||
tracing::error!("Please install it with `make install-server`")
|
||||
}
|
||||
}
|
||||
status_sender
|
||||
.send(ShardStatus::Failed((rank, err.to_string())))
|
||||
.unwrap();
|
||||
status_sender.send(ShardStatus::Failed(rank)).unwrap();
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
@ -658,11 +656,7 @@ fn shard_manager(
|
|||
loop {
|
||||
// Process exited
|
||||
if p.poll().is_some() {
|
||||
let mut err = String::new();
|
||||
p.stderr.take().unwrap().read_to_string(&mut err).unwrap();
|
||||
status_sender
|
||||
.send(ShardStatus::Failed((rank, err)))
|
||||
.unwrap();
|
||||
status_sender.send(ShardStatus::Failed(rank)).unwrap();
|
||||
return;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import os
|
||||
import torch
|
||||
|
||||
from loguru import logger
|
||||
|
@ -11,6 +10,7 @@ from text_generation_server.models.causal_lm import CausalLM
|
|||
from text_generation_server.models.flash_causal_lm import FlashCausalLM
|
||||
from text_generation_server.models.bloom import BLOOM, BLOOMSharded
|
||||
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
|
||||
from text_generation_server.models.opt import OPT, OPTSharded
|
||||
from text_generation_server.models.galactica import Galactica, GalacticaSharded
|
||||
from text_generation_server.models.santacoder import SantaCoder
|
||||
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
||||
|
@ -36,7 +36,11 @@ __all__ = [
|
|||
"GalacticaSharded",
|
||||
"GPTNeoxSharded",
|
||||
"Seq2SeqLM",
|
||||
"Galactica",
|
||||
"GalacticaSharded",
|
||||
"SantaCoder",
|
||||
"OPT",
|
||||
"OPTSharded",
|
||||
"T5Sharded",
|
||||
"get_model",
|
||||
]
|
||||
|
@ -48,9 +52,11 @@ if FLASH_ATTENTION:
|
|||
__all__.append(FlashLlama)
|
||||
__all__.append(FlashLlamaSharded)
|
||||
|
||||
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention CUDA kernels to be installed.\n" \
|
||||
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) " \
|
||||
FLASH_ATT_ERROR_MESSAGE = (
|
||||
"{} requires Flash Attention CUDA kernels to be installed.\n"
|
||||
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
||||
"or install flash attention with `cd server && make install install-flash-attention`"
|
||||
)
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
|
@ -100,13 +106,17 @@ def get_model(
|
|||
if sharded:
|
||||
if FLASH_ATTENTION:
|
||||
return FlashLlamaSharded(model_id, revision, quantize=quantize)
|
||||
raise NotImplementedError(
|
||||
FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Llama")
|
||||
)
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Llama"))
|
||||
else:
|
||||
llama_cls = FlashLlama if FLASH_ATTENTION else CausalLM
|
||||
return llama_cls(model_id, revision, quantize=quantize)
|
||||
|
||||
if config.model_type == "opt":
|
||||
if sharded:
|
||||
return OPTSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return OPT(model_id, revision, quantize=quantize)
|
||||
|
||||
if model_type == "t5":
|
||||
if sharded:
|
||||
return T5Sharded(model_id, revision, quantize=quantize)
|
||||
|
|
|
@ -62,7 +62,7 @@ class BLOOMSharded(BLOOM):
|
|||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
@ -122,13 +122,6 @@ class BLOOMSharded(BLOOM):
|
|||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
|
|
|
@ -19,8 +19,9 @@ from transformers.models.opt.parallel_layers import (
|
|||
)
|
||||
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.opt import OPT
|
||||
from text_generation_server.utils import (
|
||||
NextTokenChooser,
|
||||
StoppingCriteria,
|
||||
|
@ -158,7 +159,7 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
|||
)
|
||||
|
||||
|
||||
class Galactica(CausalLM):
|
||||
class Galactica(OPT):
|
||||
@property
|
||||
def batch_type(self) -> Type[CausalLMBatch]:
|
||||
return GalacticaCausalLMBatch
|
||||
|
@ -192,7 +193,7 @@ class GalacticaSharded(Galactica):
|
|||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
@ -253,13 +254,6 @@ class GalacticaSharded(Galactica):
|
|||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
|
|
|
@ -38,7 +38,7 @@ class GPTNeoxSharded(CausalLM):
|
|||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
|
|
@ -0,0 +1,224 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from safetensors import safe_open
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForCausalLM,
|
||||
AutoConfig,
|
||||
)
|
||||
from transformers.models.opt.parallel_layers import (
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
)
|
||||
|
||||
HAS_BITS_AND_BYTES = True
|
||||
try:
|
||||
import bitsandbytes as bnb
|
||||
from bitsandbytes.nn import Int8Params
|
||||
except Exception as e:
|
||||
HAS_BITS_AND_BYTES = False
|
||||
|
||||
|
||||
class OPT(CausalLM):
|
||||
def forward(
|
||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||||
"""Overwrite forward to ignore position_ids"""
|
||||
|
||||
# Model Forward
|
||||
outputs = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
return outputs.logits, outputs.past_key_values
|
||||
|
||||
|
||||
class OPTSharded(OPT):
|
||||
def __init__(
|
||||
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left", truncation_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_id, revision=revision, tp_parallel=True
|
||||
)
|
||||
tokenizer.pad_token_id = config.pad_token_id
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
with init_empty_weights():
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
parameters = dict(model.named_parameters())
|
||||
for file in filenames:
|
||||
with safe_open(
|
||||
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||||
) as f:
|
||||
for name in f.keys():
|
||||
if name == "lm_head.weight":
|
||||
continue
|
||||
|
||||
module_name, param_name = name.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
current_tensor = parameters[name]
|
||||
|
||||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[1]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[:, start:stop]
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
# XXX: Hack for Rowlinear to add the bias only once.
|
||||
if rank != 0:
|
||||
tensor = torch.zeros_like(tensor)
|
||||
elif isinstance(module, TensorParallelEmbedding):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
|
||||
if current_tensor.shape != tensor.shape:
|
||||
raise ValueError(
|
||||
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
|
||||
if quantize:
|
||||
if not HAS_BITS_AND_BYTES:
|
||||
raise ImportError(
|
||||
"bitsandbytes is not available on your machine either because it is not installed "
|
||||
"or you don't have a GPU.\n"
|
||||
"You can install it with `pip install bitsandbytes`."
|
||||
)
|
||||
|
||||
if (
|
||||
type(module)
|
||||
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
||||
and param_name == "weight"
|
||||
):
|
||||
tensor = Int8Params(
|
||||
tensor,
|
||||
has_fp16_weights=False,
|
||||
requires_grad=False,
|
||||
).to(device)
|
||||
state = bnb.MatmulLtState()
|
||||
state.threshold = 6.0
|
||||
state.has_fp16_weights = False
|
||||
state.memory_efficient_backward = False
|
||||
state.use_pool = True
|
||||
state.CB = tensor.CB
|
||||
state.SCB = tensor.SCB
|
||||
tensor.CB = None
|
||||
tensor.SCB = None
|
||||
|
||||
def replace_linear(state):
|
||||
def linear(input, weight, bias):
|
||||
out = bnb.matmul(
|
||||
input,
|
||||
weight,
|
||||
state=state,
|
||||
threshold=state.threshold,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
if state.CB is not None:
|
||||
# we converted 8-bit row major to turing/ampere format
|
||||
# in the first inference pass
|
||||
# we no longer need the row-major weight
|
||||
del state.CB
|
||||
weight.data = state.CxB
|
||||
|
||||
return out
|
||||
|
||||
return linear
|
||||
|
||||
module.linear = replace_linear(state)
|
||||
|
||||
else:
|
||||
tensor = tensor.to(device)
|
||||
|
||||
module._parameters[param_name] = tensor
|
||||
if name == "model.decoder.embed_tokens.weight":
|
||||
model.lm_head._parameters["weight"] = tensor
|
||||
|
||||
def forward(
|
||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||
):
|
||||
outputs = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
# Logits are sharded, so we need to gather them
|
||||
logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
|
||||
torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
|
||||
logits = torch.cat(logits, dim=2)
|
||||
|
||||
return logits, outputs.past_key_values
|
|
@ -38,7 +38,7 @@ class T5Sharded(Seq2SeqLM):
|
|||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
|
|
@ -50,7 +50,6 @@ def try_to_load_from_cache(
|
|||
|
||||
refs_dir = repo_cache / "refs"
|
||||
snapshots_dir = repo_cache / "snapshots"
|
||||
no_exist_dir = repo_cache / ".no_exist"
|
||||
|
||||
# Resolve refs (for instance to convert main to the associated commit sha)
|
||||
if refs_dir.is_dir():
|
||||
|
@ -59,10 +58,6 @@ def try_to_load_from_cache(
|
|||
with revision_file.open() as f:
|
||||
revision = f.read()
|
||||
|
||||
# Check if file is cached as "no_exist"
|
||||
if (no_exist_dir / revision / filename).is_file():
|
||||
return None
|
||||
|
||||
# Check if revision folder exists
|
||||
if not snapshots_dir.exists():
|
||||
return None
|
||||
|
|
Loading…
Reference in New Issue