feat(server): Support GPT-Neox (#39)
This commit is contained in:
parent
c6e8b9442b
commit
f830706b21
|
@ -26,6 +26,7 @@ to power Bloom, BloomZ and MT0-XXL api-inference widgets.
|
|||
- [MT0-XXL](https://huggingface.co/bigscience/mt0-xxl)
|
||||
- ~~[Galactica](https://huggingface.co/facebook/galactica-120b)~~ (deactivated)
|
||||
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
|
||||
- [GPT-Neox 20B](https://huggingface.co/EleutherAI/gpt-neox-20b): use `--revision refs/pr/13`
|
||||
|
||||
Other models are supported on a best effort basis using:
|
||||
|
||||
|
|
|
@ -21,6 +21,8 @@ struct Args {
|
|||
#[clap(default_value = "bigscience/bloom-560m", long, env)]
|
||||
model_name: String,
|
||||
#[clap(long, env)]
|
||||
revision: Option<String>,
|
||||
#[clap(long, env)]
|
||||
num_shard: Option<usize>,
|
||||
#[clap(long, env)]
|
||||
quantize: bool,
|
||||
|
@ -48,6 +50,7 @@ fn main() -> ExitCode {
|
|||
// Pattern match configuration
|
||||
let Args {
|
||||
model_name,
|
||||
revision,
|
||||
num_shard,
|
||||
quantize,
|
||||
max_concurrent_requests,
|
||||
|
@ -90,6 +93,7 @@ fn main() -> ExitCode {
|
|||
// Start shard processes
|
||||
for rank in 0..num_shard {
|
||||
let model_name = model_name.clone();
|
||||
let revision = revision.clone();
|
||||
let uds_path = shard_uds_path.clone();
|
||||
let master_addr = master_addr.clone();
|
||||
let status_sender = status_sender.clone();
|
||||
|
@ -98,6 +102,7 @@ fn main() -> ExitCode {
|
|||
thread::spawn(move || {
|
||||
shard_manager(
|
||||
model_name,
|
||||
revision,
|
||||
quantize,
|
||||
uds_path,
|
||||
rank,
|
||||
|
@ -252,6 +257,7 @@ enum ShardStatus {
|
|||
#[allow(clippy::too_many_arguments)]
|
||||
fn shard_manager(
|
||||
model_name: String,
|
||||
revision: Option<String>,
|
||||
quantize: bool,
|
||||
uds_path: String,
|
||||
rank: usize,
|
||||
|
@ -288,6 +294,11 @@ fn shard_manager(
|
|||
shard_argv.push("--quantize".to_string())
|
||||
}
|
||||
|
||||
if let Some(revision) = revision {
|
||||
shard_argv.push("--revision".to_string());
|
||||
shard_argv.push(revision)
|
||||
}
|
||||
|
||||
let mut env = vec![
|
||||
("RANK".into(), rank.to_string().into()),
|
||||
("WORLD_SIZE".into(), world_size.to_string().into()),
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
import pytest
|
||||
|
||||
from huggingface_hub.utils import RevisionNotFoundError
|
||||
|
||||
from text_generation.utils import (
|
||||
weight_hub_files,
|
||||
download_weights,
|
||||
|
@ -51,7 +53,7 @@ def test_weight_hub_files_llm():
|
|||
|
||||
|
||||
def test_weight_hub_files_empty():
|
||||
filenames = weight_hub_files("bigscience/bloom", ".errors")
|
||||
filenames = weight_hub_files("bigscience/bloom", extension=".errors")
|
||||
assert filenames == []
|
||||
|
||||
|
||||
|
@ -62,5 +64,7 @@ def test_download_weights():
|
|||
|
||||
|
||||
def test_weight_files_error():
|
||||
with pytest.raises(RevisionNotFoundError):
|
||||
weight_files("bigscience/bloom-560m", revision="error")
|
||||
with pytest.raises(LocalEntryNotFoundError):
|
||||
weight_files("bert-base-uncased")
|
||||
|
|
|
@ -4,6 +4,7 @@ import typer
|
|||
|
||||
from pathlib import Path
|
||||
from loguru import logger
|
||||
from typing import Optional
|
||||
|
||||
from text_generation import server, utils
|
||||
|
||||
|
@ -13,6 +14,7 @@ app = typer.Typer()
|
|||
@app.command()
|
||||
def serve(
|
||||
model_name: str,
|
||||
revision: Optional[str] = None,
|
||||
sharded: bool = False,
|
||||
quantize: bool = False,
|
||||
uds_path: Path = "/tmp/text-generation",
|
||||
|
@ -44,15 +46,16 @@ def serve(
|
|||
os.getenv("MASTER_PORT", None) is not None
|
||||
), "MASTER_PORT must be set when sharded is True"
|
||||
|
||||
server.serve(model_name, sharded, quantize, uds_path)
|
||||
server.serve(model_name, revision, sharded, quantize, uds_path)
|
||||
|
||||
|
||||
@app.command()
|
||||
def download_weights(
|
||||
model_name: str,
|
||||
revision: Optional[str] = None,
|
||||
extension: str = ".safetensors",
|
||||
):
|
||||
utils.download_weights(model_name, extension)
|
||||
utils.download_weights(model_name, revision, extension)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1,11 +1,15 @@
|
|||
import torch
|
||||
|
||||
from transformers import AutoConfig
|
||||
from typing import Optional
|
||||
|
||||
from text_generation.models.model import Model
|
||||
from text_generation.models.causal_lm import CausalLM
|
||||
from text_generation.models.bloom import BLOOM, BLOOMSharded
|
||||
from text_generation.models.seq2seq_lm import Seq2SeqLM
|
||||
from text_generation.models.galactica import Galactica, GalacticaSharded
|
||||
from text_generation.models.santacoder import SantaCoder
|
||||
from text_generation.models.gpt_neox import GPTNeox, GPTNeoxSharded
|
||||
|
||||
__all__ = [
|
||||
"Model",
|
||||
|
@ -25,23 +29,32 @@ torch.backends.cuda.matmul.allow_tf32 = True
|
|||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
|
||||
def get_model(model_name: str, sharded: bool, quantize: bool) -> Model:
|
||||
if model_name.startswith("bigscience/bloom"):
|
||||
def get_model(
|
||||
model_name: str, revision: Optional[str], sharded: bool, quantize: bool
|
||||
) -> Model:
|
||||
config = AutoConfig.from_pretrained(model_name)
|
||||
|
||||
if config.model_type == "bloom":
|
||||
if sharded:
|
||||
return BLOOMSharded(model_name, quantize=quantize)
|
||||
return BLOOMSharded(model_name, revision, quantize=quantize)
|
||||
else:
|
||||
return BLOOM(model_name, quantize=quantize)
|
||||
return BLOOM(model_name, revision, quantize=quantize)
|
||||
elif config.model_type == "gpt_neox":
|
||||
if sharded:
|
||||
return GPTNeoxSharded(model_name, revision, quantize=quantize)
|
||||
else:
|
||||
return GPTNeox(model_name, revision, quantize=quantize)
|
||||
elif model_name.startswith("facebook/galactica"):
|
||||
if sharded:
|
||||
return GalacticaSharded(model_name, quantize=quantize)
|
||||
return GalacticaSharded(model_name, revision, quantize=quantize)
|
||||
else:
|
||||
return Galactica(model_name, quantize=quantize)
|
||||
return Galactica(model_name, revision, quantize=quantize)
|
||||
elif "santacoder" in model_name:
|
||||
return SantaCoder(model_name, quantize)
|
||||
return SantaCoder(model_name, revision, quantize)
|
||||
else:
|
||||
if sharded:
|
||||
raise ValueError("sharded is not supported for AutoModel")
|
||||
try:
|
||||
return CausalLM(model_name, quantize=quantize)
|
||||
return CausalLM(model_name, revision, quantize=quantize)
|
||||
except Exception:
|
||||
return Seq2SeqLM(model_name, quantize=quantize)
|
||||
return Seq2SeqLM(model_name, revision, quantize=quantize)
|
||||
|
|
|
@ -56,7 +56,9 @@ class BLOOM(CausalLM):
|
|||
|
||||
|
||||
class BLOOMSharded(BLOOM):
|
||||
def __init__(self, model_name: str, quantize: bool = False):
|
||||
def __init__(
|
||||
self, model_name: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
if not model_name.startswith("bigscience/bloom"):
|
||||
raise ValueError(f"Model {model_name} is not supported")
|
||||
|
||||
|
@ -69,19 +71,23 @@ class BLOOMSharded(BLOOM):
|
|||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_name, slow_but_exact=False, tp_parallel=True
|
||||
model_name, revision=revision, slow_but_exact=False, tp_parallel=True
|
||||
)
|
||||
config.pad_token_id = 3
|
||||
|
||||
# Only download weights for small models
|
||||
if self.master and model_name == "bigscience/bloom-560m":
|
||||
download_weights(model_name, extension=".safetensors")
|
||||
download_weights(model_name, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_name, extension=".safetensors")
|
||||
filenames = weight_files(
|
||||
model_name, revision=revision, extension=".safetensors"
|
||||
)
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
|
|
|
@ -232,7 +232,7 @@ class CausalLMBatch(Batch):
|
|||
|
||||
|
||||
class CausalLM(Model):
|
||||
def __init__(self, model_name: str, quantize=False):
|
||||
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
|
@ -243,9 +243,12 @@ class CausalLM(Model):
|
|||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
device_map="auto" if torch.cuda.is_available() else None,
|
||||
load_in_8bit=quantize,
|
||||
|
|
|
@ -148,7 +148,9 @@ class Galactica(CausalLM):
|
|||
|
||||
|
||||
class GalacticaSharded(Galactica):
|
||||
def __init__(self, model_name: str, quantize: bool = False):
|
||||
def __init__(
|
||||
self, model_name: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
if not model_name.startswith("facebook/galactica"):
|
||||
raise ValueError(f"Model {model_name} is not supported")
|
||||
|
||||
|
@ -161,24 +163,23 @@ class GalacticaSharded(Galactica):
|
|||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(model_name, tp_parallel=True)
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_name, revision=revision, tp_parallel=True
|
||||
)
|
||||
tokenizer.pad_token_id = config.pad_token_id
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# Only download weights for small models
|
||||
if self.master and model_name == "facebook/galactica-125m":
|
||||
download_weights(model_name, extension=".safetensors")
|
||||
download_weights(model_name, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_name, extension=".safetensors")
|
||||
filenames = weight_files(
|
||||
model_name, revision=revision, extension=".safetensors"
|
||||
)
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
|
|
|
@ -0,0 +1,244 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from safetensors import safe_open
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForCausalLM,
|
||||
AutoConfig,
|
||||
)
|
||||
from transformers.models.gpt_neox.parallel_layers import (
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
|
||||
from text_generation.models import CausalLM
|
||||
from text_generation.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
download_weights,
|
||||
)
|
||||
|
||||
HAS_BITS_AND_BYTES = True
|
||||
try:
|
||||
import bitsandbytes as bnb
|
||||
from bitsandbytes.nn import Int8Params
|
||||
except Exception as e:
|
||||
HAS_BITS_AND_BYTES = False
|
||||
|
||||
|
||||
class GPTNeox(CausalLM):
|
||||
def forward(
|
||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||||
"""Overwrite forward to ignore position_ids"""
|
||||
|
||||
# Model Forward
|
||||
outputs = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
return outputs.logits, outputs.past_key_values
|
||||
|
||||
|
||||
class GPTNeoxSharded(GPTNeox):
|
||||
def __init__(
|
||||
self, model_name: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_name, revision=revision, tp_parallel=True
|
||||
)
|
||||
|
||||
# Only master download weights
|
||||
if self.master:
|
||||
download_weights(model_name, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(
|
||||
model_name, revision=revision, extension=".safetensors"
|
||||
)
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
with init_empty_weights():
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
parameters = dict(model.named_parameters())
|
||||
for file in filenames:
|
||||
with safe_open(
|
||||
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||||
) as f:
|
||||
for name in f.keys():
|
||||
module_name, param_name = name.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
|
||||
current_parameter_tensor = parameters.get(name, None)
|
||||
|
||||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[1]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[:, start:stop]
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
# XXX: Hack for Rowlinear to add the bias only once.
|
||||
if rank != 0:
|
||||
tensor = torch.zeros_like(tensor)
|
||||
elif isinstance(module, TensorParallelEmbedding):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif name == "embed_out.weight":
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
try:
|
||||
tensor = slice_[:]
|
||||
except:
|
||||
tensor = f.get_tensor(name)
|
||||
|
||||
if (
|
||||
current_parameter_tensor is not None
|
||||
and current_parameter_tensor.shape != tensor.shape
|
||||
):
|
||||
raise ValueError(
|
||||
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
|
||||
if quantize:
|
||||
if not HAS_BITS_AND_BYTES:
|
||||
raise ImportError(
|
||||
"bitsandbytes is not available on your machine either because it is not installed "
|
||||
"or you don't have a GPU.\n"
|
||||
"You can install it with `pip install bitsandbytes`."
|
||||
)
|
||||
|
||||
if (
|
||||
type(module)
|
||||
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
||||
and param_name == "weight"
|
||||
):
|
||||
tensor = Int8Params(
|
||||
tensor,
|
||||
has_fp16_weights=False,
|
||||
requires_grad=False,
|
||||
).to(device)
|
||||
state = bnb.MatmulLtState()
|
||||
state.threshold = 6.0
|
||||
state.has_fp16_weights = False
|
||||
state.memory_efficient_backward = False
|
||||
state.use_pool = True
|
||||
state.CB = tensor.CB
|
||||
state.SCB = tensor.SCB
|
||||
tensor.CB = None
|
||||
tensor.SCB = None
|
||||
|
||||
def replace_linear(state):
|
||||
def linear(input, weight, bias):
|
||||
out = bnb.matmul(
|
||||
input,
|
||||
weight,
|
||||
state=state,
|
||||
threshold=state.threshold,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
if state.CB is not None:
|
||||
# we converted 8-bit row major to turing/ampere format
|
||||
# in the first inference pass
|
||||
# we no longer need the row-major weight
|
||||
del state.CB
|
||||
weight.data = state.CxB
|
||||
|
||||
return out
|
||||
|
||||
return linear
|
||||
|
||||
module.linear = replace_linear(state)
|
||||
|
||||
else:
|
||||
tensor = tensor.to(device)
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
module._parameters[param_name] = tensor
|
||||
else:
|
||||
module._buffers[param_name] = tensor
|
||||
|
||||
def forward(
|
||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||
):
|
||||
outputs = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
# Logits are sharded, so we need to gather them
|
||||
logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
|
||||
torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
|
||||
logits = torch.cat(logits, dim=2)
|
||||
|
||||
return logits, outputs.past_key_values
|
|
@ -14,7 +14,7 @@ EOD = "<|endoftext|>"
|
|||
|
||||
|
||||
class SantaCoder(CausalLM):
|
||||
def __init__(self, model_name: str, quantize=False):
|
||||
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
|
@ -25,7 +25,9 @@ class SantaCoder(CausalLM):
|
|||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
)
|
||||
tokenizer.add_special_tokens(
|
||||
{
|
||||
"additional_special_tokens": [
|
||||
|
@ -42,6 +44,7 @@ class SantaCoder(CausalLM):
|
|||
self.model = (
|
||||
AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
load_in_8bit=quantize,
|
||||
trust_remote_code=True, # required
|
||||
|
|
|
@ -289,7 +289,7 @@ class Seq2SeqLMBatch(Batch):
|
|||
|
||||
|
||||
class Seq2SeqLM(Model):
|
||||
def __init__(self, model_name: str, quantize=False):
|
||||
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
|
@ -302,11 +302,14 @@ class Seq2SeqLM(Model):
|
|||
|
||||
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_name,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
device_map="auto" if torch.cuda.is_available() else None,
|
||||
load_in_8bit=quantize,
|
||||
).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
)
|
||||
tokenizer.bos_token_id = self.model.config.decoder_start_token_id
|
||||
|
||||
super(Seq2SeqLM, self).__init__(
|
||||
|
|
|
@ -6,7 +6,7 @@ from loguru import logger
|
|||
|
||||
from grpc_reflection.v1alpha import reflection
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from typing import List, Optional
|
||||
|
||||
from text_generation.cache import Cache
|
||||
from text_generation.interceptor import ExceptionInterceptor
|
||||
|
@ -67,12 +67,14 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||
|
||||
def serve(
|
||||
model_name: str,
|
||||
revision: Optional[str],
|
||||
sharded: bool,
|
||||
quantize: bool,
|
||||
uds_path: Path,
|
||||
):
|
||||
async def serve_inner(
|
||||
model_name: str,
|
||||
revision: Optional[str],
|
||||
sharded: bool = False,
|
||||
quantize: bool = False,
|
||||
):
|
||||
|
@ -87,7 +89,7 @@ def serve(
|
|||
local_url = unix_socket_template.format(uds_path, 0)
|
||||
server_urls = [local_url]
|
||||
|
||||
model = get_model(model_name, sharded, quantize)
|
||||
model = get_model(model_name, revision, sharded, quantize)
|
||||
|
||||
server = aio.server(interceptors=[ExceptionInterceptor()])
|
||||
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
|
||||
|
@ -107,4 +109,4 @@ def serve(
|
|||
logger.info("Signal received. Shutting down")
|
||||
await server.stop(0)
|
||||
|
||||
asyncio.run(serve_inner(model_name, sharded, quantize))
|
||||
asyncio.run(serve_inner(model_name, revision, sharded, quantize))
|
||||
|
|
|
@ -8,7 +8,9 @@ from datetime import timedelta
|
|||
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from functools import partial
|
||||
from huggingface_hub import HfApi, hf_hub_download, try_to_load_from_cache
|
||||
from pathlib import Path
|
||||
from huggingface_hub import HfApi, hf_hub_download, _CACHED_NO_EXIST
|
||||
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
||||
from huggingface_hub.utils import LocalEntryNotFoundError
|
||||
from tqdm import tqdm
|
||||
from typing import List, Optional, Tuple
|
||||
|
@ -170,20 +172,62 @@ def initialize_torch_distributed():
|
|||
return torch.distributed.distributed_c10d._get_default_group(), rank, world_size
|
||||
|
||||
|
||||
def weight_hub_files(model_name, extension=".safetensors"):
|
||||
def weight_hub_files(model_name, revision=None, extension=".safetensors"):
|
||||
"""Get the safetensors filenames on the hub"""
|
||||
api = HfApi()
|
||||
info = api.model_info(model_name)
|
||||
info = api.model_info(model_name, revision=revision)
|
||||
filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]
|
||||
return filenames
|
||||
|
||||
|
||||
def weight_files(model_name, extension=".safetensors"):
|
||||
def try_to_load_from_cache(model_name, revision, filename):
|
||||
"""Try to load a file from the Hugging Face cache"""
|
||||
if revision is None:
|
||||
revision = "main"
|
||||
|
||||
object_id = model_name.replace("/", "--")
|
||||
repo_cache = Path(HUGGINGFACE_HUB_CACHE) / f"models--{object_id}"
|
||||
|
||||
if not repo_cache.is_dir():
|
||||
# No cache for this model
|
||||
return None
|
||||
|
||||
refs_dir = repo_cache / "refs"
|
||||
snapshots_dir = repo_cache / "snapshots"
|
||||
no_exist_dir = repo_cache / ".no_exist"
|
||||
|
||||
# Resolve refs (for instance to convert main to the associated commit sha)
|
||||
if refs_dir.is_dir():
|
||||
revision_file = refs_dir / revision
|
||||
if revision_file.exists():
|
||||
with revision_file.open() as f:
|
||||
revision = f.read()
|
||||
|
||||
# Check if file is cached as "no_exist"
|
||||
if (no_exist_dir / revision / filename).is_file():
|
||||
return _CACHED_NO_EXIST
|
||||
|
||||
# Check if revision folder exists
|
||||
if not snapshots_dir.exists():
|
||||
return None
|
||||
cached_shas = os.listdir(snapshots_dir)
|
||||
if revision not in cached_shas:
|
||||
# No cache for this revision and we won't try to return a random revision
|
||||
return None
|
||||
|
||||
# Check if file exists in cache
|
||||
cached_file = snapshots_dir / revision / filename
|
||||
return str(cached_file) if cached_file.is_file() else None
|
||||
|
||||
|
||||
def weight_files(model_name, revision=None, extension=".safetensors"):
|
||||
"""Get the local safetensors filenames"""
|
||||
filenames = weight_hub_files(model_name, extension)
|
||||
filenames = weight_hub_files(model_name, revision, extension)
|
||||
files = []
|
||||
for filename in filenames:
|
||||
cache_file = try_to_load_from_cache(model_name, filename=filename)
|
||||
cache_file = try_to_load_from_cache(
|
||||
model_name, revision=revision, filename=filename
|
||||
)
|
||||
if cache_file is None:
|
||||
raise LocalEntryNotFoundError(
|
||||
f"File {filename} of model {model_name} not found in "
|
||||
|
@ -195,9 +239,9 @@ def weight_files(model_name, extension=".safetensors"):
|
|||
return files
|
||||
|
||||
|
||||
def download_weights(model_name, extension=".safetensors"):
|
||||
def download_weights(model_name, revision=None, extension=".safetensors"):
|
||||
"""Download the safetensors files from the hub"""
|
||||
filenames = weight_hub_files(model_name, extension)
|
||||
filenames = weight_hub_files(model_name, revision, extension)
|
||||
|
||||
download_function = partial(
|
||||
hf_hub_download,
|
||||
|
@ -207,7 +251,8 @@ def download_weights(model_name, extension=".safetensors"):
|
|||
|
||||
executor = ThreadPoolExecutor(max_workers=5)
|
||||
futures = [
|
||||
executor.submit(download_function, filename=filename) for filename in filenames
|
||||
executor.submit(download_function, filename=filename, revision=revision)
|
||||
for filename in filenames
|
||||
]
|
||||
files = [
|
||||
future.result()
|
||||
|
|
Loading…
Reference in New Issue