* Fixing exl2 and other quanize tests again.
* Mark exl2 as non release (so CI tests them, needs to be removed latet).
* Fixing exl2 (by disabling cuda graphs)
* Fix quantization defaults without cuda graphs on exl2 (linked to new
issues with it).
* Removing serde override.
* Go back to released exl2 and remove log.
* Adding warnings for deprecated bitsandbytes + upgrade info to warn.
Quantized weights were loaded in the `Weights` class, but this was
getting quite unwieldy, where every higher level method to load weights
was a long conditional to cover all the different quantizers.
This change moves loading of quantized weights out of the `Weights`
class. This is done by defining a simple `WeightsLoader` interface
that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`,
and `MarlinWeightsLoader`. These implementations are in the quantizers'
respective modules. The `Weights` class provides the low-level load
operations (such as loading tensors or sharded tensors), but delegates
loads that need quantizer-specific weight processing to a loader. The
loaders still use the low-level functionality provided by `Weights`.
I initially tried making a hierarchy where a class like `GPTQWeights`
would inherit from `Weights`. But it is not very flexible (e.g. does
not work well with the new weight storage mock used in tests) and
the implicit indirections made the code harder to follow.
* feat: first draft load multiple lora
* feat: load weights within layer and refactor lora pass
* fix: refactor and reduce lora math
* feat: baseline impl single request multi lora support
* feat: prefer lorax implementation and port loading logic
* fix: prefer adapter_data and refactors
* feat: perfer loraxs custom punica kernels and add mlp loras
* fix: adjust batch for bgmv
* fix: adjust adapter_segments logic when in batch
* fix: refactor and move changes to v3 proto
* fix: pass model_id for all flash causal lms
* fix: pass model_id for all causal and seq2seq lms
* fix: add model_id to model test
* feat: add lora support to mistral and refactors
* feat: prefer model id in request
* fix: include rust code for adapter id
* feat: bump launcher and add new lora docs
* feat: support base model generation and refactors
* fix: rename doc to retry ci build
* feat: support if vlm models
* fix: add adapter_data param and avoid missing layers
* fix: add adapter_data param to phi and neox
* fix: update all models forwards to include adapter_data
* fix: add model_id to IdeficsCausalLM
* Update lora.md
Fixed a typo
* Update lora.md
Fixing spam image
* fix: add lora kernel to dockerfile, support running without kernels and refactors
* fix: avoid dockerfile conflict
* fix: refactors and adjust flash llama lora logic
* fix: skip llama test due to CI issue (temp)
* fix: skip llama test CI (temp) 2
* fix: revert skips and prefer updated ci token for tests
* fix: refactors and helpful comments
* fix: add noop in TensorParallelAdapterRowLinear too
* fix: refactor and move shard_lora_weights logic
* fix: exit early if no adapter_data
---------
Co-authored-by: Derek <datavistics@gmail.com>
The router will now send the input as chunks besides as a single
string. This change modifies the server to process chunked input
rather than strings. This also allows us to remove the image
extraction code from the server.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
---------
Co-authored-by: Joshua Rosenkranz <joshua.rosenkranz@gmail.com>
# What does this PR do?
```
text-generation-launcher --model-id XXX # Uses cuda graphs by default
text-generation-launcher --model-id XXX --cuda-graphs "1,2" #Restrict the number of cuda graphs which saves VRAM
text-generation-launcher --model-id XXX --cuda-graphs "0" # Disabling it entirely
```
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
Using a single `os.getenv` statement instead of multiple.
Should make truthful values easier to catch
In the end didn't move towards full CLI because modifying globals in
Python is error prone (depends on code import order).
Added an error when mamba is launched with TP.
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
- Move float16 to bfloat16, which has less imprecisions (load test are
failing with the update kernels + f16, all working under bf16).
Another note, is that we are not respecting the layer norm in f32
defined in the configuration (this is OK in my book, but that could
impact the f16 precision)
- Moved to update kernels. Triton overhead is super high, removed by
switching to cuda graphs works great (update cuda graph is available
in TRT-LLM if needed, seems *exactly* like the regular ssm kernel.
- Moved inference_params struct in order to make only 2 tensors, to
reduce the overhead of copying back and forth to the cuda graphs.
- Left over overhead seems entirely in the tokenization bit. (Still 4
copies are paid before launching the graph)
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet
though.
Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.
Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.
Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @
@OlivierDehaene OR @Narsil
-->
This draft PR is a work in progress implementation of the mamba model.
This PR currently loads weights, and produces correct logits after a
single pass.
This PR still needs to correctly integrate this model so it produces
tokens as expected, and apply optimization to avoid all copies during
runtime/unnecessary operations.
#### Helpful resources
[Mamba: Linear-Time Sequence Modeling with Selective State Spaces
(Albert Gu and Tri Dao)](https://arxiv.org/abs/2312.00752)
https://github.com/johnma2006/mamba-minimalhttps://github.com/huggingface/candle/blob/main/candle-examples/examples/mamba-minimal/model.rshttps://github.com/huggingface/transformers/pull/28094
Notes: this dev work is currently targeting `state-spaces/mamba-130m`,
so if you want to test please use that model. Additionally when starting
the router the prefill needs to be limited: `cargo run --
--max-batch-prefill-tokens 768 --max-input-length 768`
## Update / Current State
Integration tests have been added and basic functionality such as model
loading is supported.
```bash
cd integration-tests
pytest -vv models/test_fused_kernel_mamba.py
```
- [x] add tests
- [x] load model
- [x] make simple request
- [ ] resolve warmup issue
- [ ] resolve output issues
fetching models tested during dev
```bash
text-generation-server download-weights state-spaces/mamba-130m
text-generation-server download-weights state-spaces/mamba-1.4b
text-generation-server download-weights state-spaces/mamba-2.8b
```
The server can be run
```bash
cd server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 python text_generation_server/cli.py serve state-spaces/mamba-2.8b
```
router
```bash
cargo run
```
make a request
```bash
curl -s localhost:3000/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json' | jq
```
response
```json
{
"generated_text": "\n\nDeep learning is a machine learning technique that uses a deep neural network to learn from data."
}
```
---------
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>