Commit Graph

13 Commits

Author SHA1 Message Date
Daniël de Kok a785000842
Add initial support for compressed-tensors checkpoints (#2732)
compressed-tensors is a safetensors extension for sparse, quantized
tensors. The format is more powerful than earlier AWQ/GPTQ/FP8
quantization, because

- Different quantizer configurations can be used for different targets.
- The format can specify input/output quantizers in addition to weight
  quantizers.
- Configurable exclusions for quantization.

This change adds a dependency on the `compressed-tensors` package for
its configuration parsing and layer matching functionality.

The following types of quantization are supported in this PR:

- W8A16 and W4A16 INT using GPTQ-Marlin kernels.
- W8A8 and W8A16 FP using FP8-Marlin and cutlass kernels.

Support for other quantization types will be added in subsequent PRs.
2024-11-10 13:54:07 +01:00
Daniël de Kok 0f346a3296
Switch from fbgemm-gpu w8a8 scaled matmul to vLLM/marlin-kernels (#2688)
* Switch from fbgemm-gpu w8a8 scaled matmul to vLLM/marlin-kernels

Performance and accuracy of these kernels are on par (tested with Llama
70B and 405B). Removes a dependency and resolves some stability issues
we have been seeing.

* Update test snapshots
2024-10-25 16:40:47 +02:00
Daniël de Kok eab07f746c
Add support for FP8 KV cache scales (#2628)
* Add support for FP8 KV cache scales

Since FP8 only has limited dynamic range, we can scale keys/values
before storing them into the cache (and unscale them in attention). To
avoid rescaling the cache as the absmax values change, good scales are
usually determined per layer using calibration calibration data and stored
in the checkpoint.

This change adds support for for using key-value scales and loading them
from checkpoints in the two most common formats:

- Separate per-layer `k_scale` and `v_scale` scalars.
- Per-layer `kv_scale` scalar (older format).

Currently, scales are only used with an `float8_e4m3fn` cache.

Besides adding support for key/value scales, the `fp8_quantize` function
is also extended to support quantization with a kernel vendored from
vLLM. This is slightly faster than the PyTorch implementation, but also
scales in FP32, potentially improving accuracy.

* Update FP8 KV cache test to use checkpoint with scales

* `can_scale`: check that the attention is flashinfer
2024-10-24 16:36:18 +02:00
Daniël de Kok 5e0fb46821
Make handling of FP8 scales more consisent (#2666)
Change `fp8_quantize` so that we can pass around reciprocals everywhere,
so scales are always passed around in the checkpoint format.

I also noticed that we ignore any input scales that we might have when
fbgemm is available. Skip this path if we already have a scale.
2024-10-19 09:05:01 +02:00
Mohit Sharma 704a58c807
Fp8 e4m3_fnuz support for rocm (#2588)
* (feat) fp8 fnuz support for rocm

* (review comments) Fix compression_config load, type hints

* (bug) update all has_tensor

* (review_comments) fix typo and added comments

* (nit) improved comment
2024-10-16 09:54:50 +02:00
Daniël de Kok c29dc89c18
Add support for scalar FP8 weight scales (#2550)
* Add support for scalar FP8 weight scales

* Support LLM compressor FP8 checkpoints on H100

On H100, we use fbgemm-gpu, which requires bfloat16 as the input dtype.
However, we wouldn't pick up fp8 quantization for models quantized with
LLM compressor. This change adds enough parsing to detect if models have
FP8-quantized weights.

* Remove stray debug print
2024-09-24 13:57:40 +02:00
drbh bab02ff2bc
feat: add ruff and resolve issue (#2262)
* feat: add ruff and resolve issue

* fix: update client exports and adjust after rebase

* fix: adjust syntax to avoid circular import

* fix: adjust client ruff settings

* fix: lint and refactor import check and avoid model enum as global names

* fix: improve fbgemm_gpu check and lints

* fix: update lints

* fix: prefer comparing model enum over str

* fix: adjust lints and ignore specific rules

* fix: avoid unneeded quantize check
2024-07-26 10:29:09 -04:00
OlivierDehaene 5fca30ee15
fix(l4): fix fp8 logic on l4 (#2277)
* fix(l4): fix fp8 logic on l4

* also quant weights with single scale

* use marlin even on 89
2024-07-23 11:24:29 +02:00
OlivierDehaene 4844ff790a
fix(server): fix fp8 weight loading (#2268)
* fix(server): fix fp8 weight loading

* fixed scales loading

* update snap

* revert default dtype
2024-07-22 15:51:32 +00:00
OlivierDehaene 53ec0b790b
feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248)
* feat(fp8): add support for fbgemm

* allow loading fp8 weights directly

* update outlines

* fix makefile

* build fbgemm

* avoid circular import and fix dockerfile

* add default dtype

* refactored weights loader

* fix auto conversion

* fix quantization config parsing

* force new nccl on install

* missing get_weights implementation

* increase timeout
2024-07-20 19:02:04 +02:00
Daniël de Kok ba291dad9f
Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights

Handling of quantized weights was split between two mechanisms:

- For quantized checkpoints, we used the new weight loader
  infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
  instead relied on conditional in `get_linear`.

Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.

This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:

- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
  `get_linear` does not need to know how to handle quantizer linear
  layers.
- All quantizer weights are strongly typed, we don't pass around
  raw tensors.
- We don't have to pass around the `quantizer` string everywhere.

* Exclude non-MLP layers when using FP8 quantization with Llama
2024-07-19 09:37:39 +02:00
Daniël de Kok cb150eb295
Add support for FP8 on compute capability >=8.0, <8.9 (#2213)
Use FP8 GPTQ-Marlin kernels to enable FP8 support on CUDA GPUs
with compute capability >=8.0 and <8.9.

Co-authored-by: Florian Zimmermeister <flozi00.fz@gmail.com>
2024-07-11 16:03:26 +02:00
Nicolas Patry fd89d9dfae
Refactor layers. (#1866)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-05-13 12:44:30 +02:00