The `GPTWeightLoader` was structured like this in pseudocode:
if marlin:
Set up tensors in a way that GPTQ-Marlin expects
else:
Set up tensors in a way that ExLlama/GPTQ/AWQ expect
However, the GPT-Marlin implementation details should really be in the
`marlin` module. So move the former part out to a separate
`GPTQMarlinWeightsLoader`.
* Add support for repacking AWQ weights for GPTQ-Marlin
So far we couldn't support AWQ because virtually all AWQ models use
symmetric quantization, which GPTQ-Marlin did not suppors. GPTQ-Marlin
has recently added support AWQ repacking and AWQ asymmetric quantization
(zero_point=True).
This change updates all GPTQ-Marlin kernels from upstream and wires up
AWQ support. For now enabling AWQ using Marlin requires running TGI with
`--quantize gptq`.
* Enable Marlin for supported AWQ configurations by default
This makes the AWQ -> GPTQ repack test redundant, since we are now
testing this with the regular AWQ test.
* Improve the handling of quantized weights
Handling of quantized weights was split between two mechanisms:
- For quantized checkpoints, we used the new weight loader
infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
instead relied on conditional in `get_linear`.
Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.
This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:
- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
`get_linear` does not need to know how to handle quantizer linear
layers.
- All quantizer weights are strongly typed, we don't pass around
raw tensors.
- We don't have to pass around the `quantizer` string everywhere.
* Exclude non-MLP layers when using FP8 quantization with Llama
Quantized weights were loaded in the `Weights` class, but this was
getting quite unwieldy, where every higher level method to load weights
was a long conditional to cover all the different quantizers.
This change moves loading of quantized weights out of the `Weights`
class. This is done by defining a simple `WeightsLoader` interface
that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`,
and `MarlinWeightsLoader`. These implementations are in the quantizers'
respective modules. The `Weights` class provides the low-level load
operations (such as loading tensors or sharded tensors), but delegates
loads that need quantizer-specific weight processing to a loader. The
loaders still use the low-level functionality provided by `Weights`.
I initially tried making a hierarchy where a class like `GPTQWeights`
would inherit from `Weights`. But it is not very flexible (e.g. does
not work well with the new weight storage mock used in tests) and
the implicit indirections made the code harder to follow.