Commit Graph

11 Commits

Author SHA1 Message Date
OlivierDehaene 2efd46ef95 fix(server): fix missing datasets in quantize 2023-07-27 14:50:45 +02:00
OlivierDehaene 8bd0adb135
fix(server): fix quantization python requirements (#708) 2023-07-27 12:28:10 +02:00
OlivierDehaene 31e2253ae7
feat(server): use latest flash attention commit (#543)
@njhill FYI
2023-07-04 20:23:55 +02:00
Nicolas Patry 1da07e85aa
feat(server): Add Non flash MPT. (#514)
# What does this PR do?


This adds a non flash version of MPT.
Flash is harder because we need to create a bias ready cuda kernel of
flash attention.

Fixes
https://github.com/huggingface/text-generation-inference/issues/361
Fixes
https://github.com/huggingface/text-generation-inference/issues/491
Fixes
https://github.com/huggingface/text-generation-inference/issues/290
2023-07-03 13:01:46 +02:00
Nicolas Patry aefde28b45
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438)
Let's start discussing implementation.

- Need to expose the quantization scripts (either included here or add
doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa)
- Make sure GPTQ works for multiple models (priority to Falcon).

Currently it means that every place we use `get_{tensor|sharded}` to
check for quantization.

My idea is to reintegrate as much as possible into `utils/layer.py` by
expanding `load_multi` to be a bit more generic.
This might require some thinking, but ultimately the
`qweight,qzeros,scales,g_idx` should be in a single place, and
independant of bias presence.

# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 12:27:01 +02:00
Nicolas Patry abd58ff82c
feat(server): Rework model loading (#344)
# What does this PR do?

Reworked the loading logic. Idea is to use cleaner loading code:

- Remove need for `no_init_weights`
- Remove all weird `bnb_linear` and `load_weights` and
`post_load_weights`.

New code layout:

- New class `Weights` in charge of handling loading the weights from
multiple files into appropiate tensors (potentially sharded)
- TP layers now are "shells", they contain the code to know what kind of
sharding we need + eventual `all_reduce`. They do not inherit from
linear, but they contain some kind of Linear instead
- the contained linear can be either FastLinear, BnbLinear or GPTq
Linear next.
- All modeling code is explictly made for sharding, process group is
just no-ops for non sharded code (removes a lot of test cases)

![Screenshot from 2023-05-19
23-19-59](https://github.com/huggingface/text-generation-inference/assets/204321/9a802654-74a3-488c-87a8-073743a6143f)

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.taildb5d.ts.net>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal>
Co-authored-by: OlivierDehaene <olivier@huggingface.co>
Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
2023-06-08 14:51:52 +02:00
OlivierDehaene 94377efa78
chore(sever): update requirements (#357)
Fixes #338
2023-05-23 18:03:22 +02:00
OlivierDehaene 37b64a5c10
chore(server): update safetensors version (#235) 2023-04-25 13:50:56 +02:00
OlivierDehaene 98a3e0d135
chore(server): update huggingface-hub (#227) 2023-04-24 15:57:13 +02:00
OlivierDehaene 6837b2eb77
fix(docker): remove unused dependencies (#205) 2023-04-19 19:39:31 +02:00
OlivierDehaene 7a1ba58557
fix(docker): fix docker image dependencies (#187) 2023-04-17 00:26:47 +02:00