from dataclasses import dataclass import torch from EETQ import quant_weights, w8_a16_gemm from text_generation_server.utils.weights import UnquantizedWeight @dataclass class EETQWeight(UnquantizedWeight): weight: torch.Tensor def get_linear(self, bias: torch.Tensor): try: from text_generation_server.layers.eetq import EETQLinear return EETQLinear(self.weight, bias) except ImportError: raise ImportError( "Please install EETQ from https://github.com/NetEase-FuXi/EETQ" ) class EETQLinear(torch.nn.Module): def __init__( self, weight, bias, ) -> None: super().__init__() device = weight.device if weight.dtype != torch.float16: weight = weight.to(dtype=torch.float16) weight = torch.t(weight).contiguous().cpu() weight, scale = quant_weights(weight, torch.int8, False) self.weight = weight.cuda(device) self.scale = scale.cuda(device) self.bias = bias.cuda(device) if bias is not None else None def forward(self, input: torch.Tensor) -> torch.Tensor: output = w8_a16_gemm(input, self.weight, self.scale) output = output + self.bias if self.bias is not None else output return output