import torch import torch.distributed from typing import List, Optional, Tuple from transformers import ( AutoTokenizer, AutoConfig, AutoProcessor, ) from text_generation_server.models.custom_modeling.idefics_config import IdeficsConfig from text_generation_server.models.custom_modeling.idefics_processing import ( IdeficsProcessor, ) from transformers import LlamaTokenizerFast from text_generation_server.models.custom_modeling.idefics_modeling import ( IdeficsForVisionText2Text, ) from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class IDEFICSSharded(IdeficsCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, use_medusa: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") # 9b seems to work correctly enough in float16, but 80b seems # to be really saturating for f16. dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype self.device, self.dtype = device, dtype config = IdeficsConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, ) config.quantize = quantize config.use_medusa = use_medusa config.vision_config.quantize = quantize tokenizer = LlamaTokenizerFast.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) self.processor = IdeficsProcessor.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group, ) model = IdeficsForVisionText2Text(config, weights) torch.distributed.barrier(group=self.process_group) super(IdeficsCausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, )