import asyncio import contextlib import json import math import os import random import shutil import subprocess import sys import tempfile import time from typing import Dict, List, Optional import docker import pytest from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError from docker.errors import NotFound from syrupy.extensions.json import JSONSnapshotExtension from text_generation import AsyncClient from text_generation.types import ( BestOfSequence, ChatComplete, ChatCompletionChunk, ChatCompletionComplete, Completion, Details, Grammar, InputToken, Response, Token, ) DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None) HF_TOKEN = os.getenv("HF_TOKEN", None) DOCKER_VOLUME = os.getenv("DOCKER_VOLUME", "/data") DOCKER_DEVICES = os.getenv("DOCKER_DEVICES") def pytest_addoption(parser): parser.addoption( "--release", action="store_true", default=False, help="run release tests" ) def pytest_configure(config): config.addinivalue_line("markers", "release: mark test as a release-only test") def pytest_collection_modifyitems(config, items): if config.getoption("--release"): # --release given in cli: do not skip release tests return skip_release = pytest.mark.skip(reason="need --release option to run") for item in items: if "release" in item.keywords: item.add_marker(skip_release) class ResponseComparator(JSONSnapshotExtension): rtol = 0.2 ignore_logprob = False def serialize( self, data, *, exclude=None, matcher=None, ): if ( isinstance(data, Response) or isinstance(data, ChatComplete) or isinstance(data, ChatCompletionChunk) or isinstance(data, ChatCompletionComplete) ): data = data.model_dump() if isinstance(data, List): data = [d.model_dump() for d in data] data = self._filter( data=data, depth=0, path=(), exclude=exclude, matcher=matcher ) return json.dumps(data, indent=2, ensure_ascii=False, sort_keys=False) + "\n" def matches( self, *, serialized_data, snapshot_data, ) -> bool: def convert_data(data): data = json.loads(data) if isinstance(data, Dict) and "choices" in data: choices = data["choices"] if isinstance(choices, List) and len(choices) >= 1: if "delta" in choices[0]: return ChatCompletionChunk(**data) if "text" in choices[0]: return Completion(**data) return ChatComplete(**data) if isinstance(data, Dict): return Response(**data) if isinstance(data, List): if ( len(data) > 0 and "object" in data[0] and data[0]["object"] == "text_completion" ): return [Completion(**d) for d in data] return [Response(**d) for d in data] raise NotImplementedError def eq_token(token: Token, other: Token) -> bool: return ( token.id == other.id and token.text == other.text and ( self.ignore_logprob or (token.logprob == other.logprob and token.logprob is None) or math.isclose(token.logprob, other.logprob, rel_tol=self.rtol) ) and token.special == other.special ) def eq_prefill_token(prefill_token: InputToken, other: InputToken) -> bool: try: return ( prefill_token.id == other.id and prefill_token.text == other.text and ( self.ignore_logprob or math.isclose( prefill_token.logprob, other.logprob, rel_tol=self.rtol, ) if prefill_token.logprob is not None else prefill_token.logprob == other.logprob ) ) except TypeError: return False def eq_best_of(details: BestOfSequence, other: BestOfSequence) -> bool: return ( details.finish_reason == other.finish_reason and details.generated_tokens == other.generated_tokens and details.seed == other.seed and len(details.prefill) == len(other.prefill) and all( [ eq_prefill_token(d, o) for d, o in zip(details.prefill, other.prefill) ] ) and len(details.tokens) == len(other.tokens) and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)]) ) def eq_details(details: Details, other: Details) -> bool: return ( details.finish_reason == other.finish_reason and details.generated_tokens == other.generated_tokens and details.seed == other.seed and len(details.prefill) == len(other.prefill) and all( [ eq_prefill_token(d, o) for d, o in zip(details.prefill, other.prefill) ] ) and len(details.tokens) == len(other.tokens) and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)]) and ( len(details.best_of_sequences) if details.best_of_sequences is not None else 0 ) == ( len(other.best_of_sequences) if other.best_of_sequences is not None else 0 ) and ( all( [ eq_best_of(d, o) for d, o in zip( details.best_of_sequences, other.best_of_sequences ) ] ) if details.best_of_sequences is not None else details.best_of_sequences == other.best_of_sequences ) ) def eq_completion(response: Completion, other: Completion) -> bool: return response.choices[0].text == other.choices[0].text def eq_chat_complete(response: ChatComplete, other: ChatComplete) -> bool: return ( response.choices[0].message.content == other.choices[0].message.content ) def eq_chat_complete_chunk( response: ChatCompletionChunk, other: ChatCompletionChunk ) -> bool: return response.choices[0].delta.content == other.choices[0].delta.content def eq_response(response: Response, other: Response) -> bool: return response.generated_text == other.generated_text and eq_details( response.details, other.details ) serialized_data = convert_data(serialized_data) snapshot_data = convert_data(snapshot_data) if not isinstance(serialized_data, List): serialized_data = [serialized_data] if not isinstance(snapshot_data, List): snapshot_data = [snapshot_data] if isinstance(serialized_data[0], Completion): return len(snapshot_data) == len(serialized_data) and all( [eq_completion(r, o) for r, o in zip(serialized_data, snapshot_data)] ) if isinstance(serialized_data[0], ChatComplete): return len(snapshot_data) == len(serialized_data) and all( [eq_chat_complete(r, o) for r, o in zip(serialized_data, snapshot_data)] ) if isinstance(serialized_data[0], ChatCompletionChunk): return len(snapshot_data) == len(serialized_data) and all( [ eq_chat_complete_chunk(r, o) for r, o in zip(serialized_data, snapshot_data) ] ) return len(snapshot_data) == len(serialized_data) and all( [eq_response(r, o) for r, o in zip(serialized_data, snapshot_data)] ) class GenerousResponseComparator(ResponseComparator): # Needed for GPTQ with exllama which has serious numerical fluctuations. rtol = 0.75 class IgnoreLogProbResponseComparator(ResponseComparator): ignore_logprob = True class LauncherHandle: def __init__(self, port: int): self.client = AsyncClient(f"http://localhost:{port}", timeout=30) def _inner_health(self): raise NotImplementedError async def health(self, timeout: int = 60): assert timeout > 0 for _ in range(timeout): if not self._inner_health(): raise RuntimeError("Launcher crashed") try: await self.client.generate("test") return except (ClientConnectorError, ClientOSError, ServerDisconnectedError): time.sleep(1) raise RuntimeError("Health check failed") class ContainerLauncherHandle(LauncherHandle): def __init__(self, docker_client, container_name, port: int): super(ContainerLauncherHandle, self).__init__(port) self.docker_client = docker_client self.container_name = container_name def _inner_health(self) -> bool: container = self.docker_client.containers.get(self.container_name) return container.status in ["running", "created"] class ProcessLauncherHandle(LauncherHandle): def __init__(self, process, port: int): super(ProcessLauncherHandle, self).__init__(port) self.process = process def _inner_health(self) -> bool: return self.process.poll() is None @pytest.fixture def response_snapshot(snapshot): return snapshot.use_extension(ResponseComparator) @pytest.fixture def generous_response_snapshot(snapshot): return snapshot.use_extension(GenerousResponseComparator) @pytest.fixture def ignore_logprob_response_snapshot(snapshot): return snapshot.use_extension(IgnoreLogProbResponseComparator) @pytest.fixture(scope="module") def event_loop(): loop = asyncio.get_event_loop() yield loop loop.close() @pytest.fixture(scope="module") def launcher(event_loop): @contextlib.contextmanager def local_launcher( model_id: str, num_shard: Optional[int] = None, quantize: Optional[str] = None, trust_remote_code: bool = False, use_flash_attention: bool = True, disable_grammar_support: bool = False, dtype: Optional[str] = None, revision: Optional[str] = None, max_input_length: Optional[int] = None, max_batch_prefill_tokens: Optional[int] = None, max_total_tokens: Optional[int] = None, lora_adapters: Optional[List[str]] = None, cuda_graphs: Optional[List[int]] = None, ): port = random.randint(8000, 10_000) master_port = random.randint(10_000, 20_000) shard_uds_path = ( f"/tmp/tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}-server" ) args = [ "text-generation-launcher", "--model-id", model_id, "--port", str(port), "--master-port", str(master_port), "--shard-uds-path", shard_uds_path, ] env = os.environ if disable_grammar_support: args.append("--disable-grammar-support") if num_shard is not None: args.extend(["--num-shard", str(num_shard)]) if quantize is not None: args.append("--quantize") args.append(quantize) if dtype is not None: args.append("--dtype") args.append(dtype) if revision is not None: args.append("--revision") args.append(revision) if trust_remote_code: args.append("--trust-remote-code") if max_input_length: args.append("--max-input-length") args.append(str(max_input_length)) if max_batch_prefill_tokens: args.append("--max-batch-prefill-tokens") args.append(str(max_batch_prefill_tokens)) if max_total_tokens: args.append("--max-total-tokens") args.append(str(max_total_tokens)) if lora_adapters: args.append("--lora-adapters") args.append(",".join(lora_adapters)) if cuda_graphs: args.append("--cuda-graphs") args.append(",".join(map(str, cuda_graphs))) print(" ".join(args), file=sys.stderr) env["LOG_LEVEL"] = "info,text_generation_router=debug" if not use_flash_attention: env["USE_FLASH_ATTENTION"] = "false" with tempfile.TemporaryFile("w+") as tmp: # We'll output stdout/stderr to a temporary file. Using a pipe # cause the process to block until stdout is read. with subprocess.Popen( args, stdout=tmp, stderr=subprocess.STDOUT, env=env, ) as process: yield ProcessLauncherHandle(process, port) process.terminate() process.wait(60) tmp.seek(0) shutil.copyfileobj(tmp, sys.stderr) if not use_flash_attention: del env["USE_FLASH_ATTENTION"] @contextlib.contextmanager def docker_launcher( model_id: str, num_shard: Optional[int] = None, quantize: Optional[str] = None, trust_remote_code: bool = False, use_flash_attention: bool = True, disable_grammar_support: bool = False, dtype: Optional[str] = None, revision: Optional[str] = None, max_input_length: Optional[int] = None, max_batch_prefill_tokens: Optional[int] = None, max_total_tokens: Optional[int] = None, lora_adapters: Optional[List[str]] = None, cuda_graphs: Optional[List[int]] = None, ): port = random.randint(8000, 10_000) args = ["--model-id", model_id, "--env"] if disable_grammar_support: args.append("--disable-grammar-support") if num_shard is not None: args.extend(["--num-shard", str(num_shard)]) if quantize is not None: args.append("--quantize") args.append(quantize) if dtype is not None: args.append("--dtype") args.append(dtype) if revision is not None: args.append("--revision") args.append(revision) if trust_remote_code: args.append("--trust-remote-code") if max_input_length: args.append("--max-input-length") args.append(str(max_input_length)) if max_batch_prefill_tokens: args.append("--max-batch-prefill-tokens") args.append(str(max_batch_prefill_tokens)) if max_total_tokens: args.append("--max-total-tokens") args.append(str(max_total_tokens)) if lora_adapters: args.append("--lora-adapters") args.append(",".join(lora_adapters)) if cuda_graphs: args.append("--cuda-graphs") args.append(",".join(map(str, cuda_graphs))) client = docker.from_env() container_name = f"tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}" try: container = client.containers.get(container_name) container.stop() container.wait() except NotFound: pass gpu_count = num_shard if num_shard is not None else 1 env = { "LOG_LEVEL": "info,text_generation_router=debug", } if not use_flash_attention: env["USE_FLASH_ATTENTION"] = "false" if HF_TOKEN is not None: env["HF_TOKEN"] = HF_TOKEN volumes = [] if DOCKER_VOLUME: volumes = [f"{DOCKER_VOLUME}:/data"] if DOCKER_DEVICES: devices = DOCKER_DEVICES.split(",") visible = os.getenv("ROCR_VISIBLE_DEVICES") if visible: env["ROCR_VISIBLE_DEVICES"] = visible device_requests = [] else: devices = [] device_requests = [ docker.types.DeviceRequest(count=gpu_count, capabilities=[["gpu"]]) ] container = client.containers.run( DOCKER_IMAGE, command=args, name=container_name, environment=env, auto_remove=False, detach=True, device_requests=device_requests, devices=devices, volumes=volumes, ports={"80/tcp": port}, shm_size="1G", ) yield ContainerLauncherHandle(client, container.name, port) if not use_flash_attention: del env["USE_FLASH_ATTENTION"] try: container.stop() container.wait() except NotFound: pass container_output = container.logs().decode("utf-8") print(container_output, file=sys.stderr) container.remove() if DOCKER_IMAGE is not None: return docker_launcher return local_launcher @pytest.fixture(scope="module") def generate_load(): async def generate_load_inner( client: AsyncClient, prompt: str, max_new_tokens: int, n: int, seed: Optional[int] = None, grammar: Optional[Grammar] = None, stop_sequences: Optional[List[str]] = None, ) -> List[Response]: futures = [ client.generate( prompt, max_new_tokens=max_new_tokens, decoder_input_details=True, seed=seed, grammar=grammar, stop_sequences=stop_sequences, ) for _ in range(n) ] return await asyncio.gather(*futures) return generate_load_inner