import torch from torch import nn from torch.nn import functional as F from typing import Optional HAS_BITS_AND_BYTES = True try: from bitsandbytes.nn import Linear8bitLt except ImportError as e: HAS_BITS_AND_BYTES = False class FastLinear(nn.Linear): def __init__( self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, ) -> None: super(FastLinear, self).__init__(in_features, out_features, bias, device, dtype) self.quantized = False self.bnb_linear = None def prepare_weights(self, quantize: Optional[str] = None): if quantize == "bitsandbytes": if not HAS_BITS_AND_BYTES: raise ImportError( "bitsandbytes is not available on your machine either because it is not installed " "or you don't have a GPU.\n" "You can install it with `pip install bitsandbytes`." ) self.quantized = True self.bnb_linear = Linear8bitLt( self.in_features, self.out_features, has_fp16_weights=False, threshold=6.0, bias=False, ) # Copy data to bnb_linear self.bnb_linear.weight.data = self.weight.data if self.bias is not None: self.bnb_linear.bias = nn.Parameter(self.bias) # Delete reference to data self.weight = None self.bias = None elif quantize == "gptq": raise NotImplementedError("`gptq` is not implemented for now") elif quantize is None: self.weight = nn.Parameter(self.weight.T) else: raise ValueError(f"Unexpected quantize `{quantize}`") def forward(self, input: torch.Tensor) -> torch.Tensor: if self.quantized: return self.bnb_linear(input) else: if self.bias is not None: return torch.addmm(self.bias, input, self.weight) return torch.matmul(input, self.weight) class TensorParallelColumnLinear(FastLinear): def __init__( self, in_features, out_features, process_group: torch.distributed.ProcessGroup, bias=True, device=None, dtype=None, ): self.process_group = process_group self.tp_world_size = process_group.size() assert out_features % self.tp_world_size == 0 out_features = out_features // self.tp_world_size super().__init__( in_features=in_features, out_features=out_features, bias=bias, device=device, dtype=dtype, ) class TensorParallelRowLinear(FastLinear): def __init__( self, in_features, out_features, process_group: torch.distributed.ProcessGroup, reduce=True, bias=True, device=None, dtype=None, ): self.process_group = process_group self.tp_world_size = process_group.size() self.reduce = reduce assert in_features % self.tp_world_size == 0 in_features = in_features // self.tp_world_size super().__init__( in_features=in_features, out_features=out_features, bias=bias, device=device, dtype=dtype, ) def forward(self, input: torch.Tensor) -> torch.Tensor: out = super(TensorParallelRowLinear, self).forward(input) if self.reduce: torch.distributed.all_reduce(out, group=self.process_group) return out class TensorParallelEmbedding(nn.Embedding): def __init__( self, num_embeddings, embedding_dim, process_group: torch.distributed.ProcessGroup, reduce=True, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, device=None, dtype=None, ): self.reduce = reduce self.process_group = process_group self.tp_rank = process_group.rank() self.tp_world_size = process_group.size() self.original_num_embeddings = num_embeddings assert num_embeddings % self.tp_world_size == 0 block_size = num_embeddings // self.tp_world_size # inputs in `[min_id, max_id[` are handled by `self` to get embeddings self.min_id = self.tp_rank * block_size self.max_id = (self.tp_rank + 1) * block_size # Additional entry that will map to zero # Used for masking self.null_idx = block_size super().__init__( block_size, embedding_dim, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse, _weight=_weight, device=device, dtype=dtype, ) def add_null_idx(self): """Additional 0 entry used for masking""" self.weight = nn.Parameter(F.pad(self.weight, (0, 0, 0, 1))) def forward(self, input: torch.Tensor) -> torch.Tensor: # default all out of bounds values to `self.null_idx` that will then be mapped to 0 # translate for [0, self.max_id - self.min_id[ input = torch.where( (self.min_id > input) | (input >= self.max_id), self.null_idx, input - self.min_id, ) out = super().forward(input) if self.reduce: torch.distributed.all_reduce(out, group=self.process_group) return out try: import dropout_layer_norm class FastLayerNorm(nn.LayerNorm): def forward(self, hidden_states, residual=None): if hidden_states.shape[-1] > 8192: if residual is not None: hidden_states += residual residual = hidden_states return super(FastLayerNorm, self).forward(hidden_states), residual else: ( normed_hidden_states, residual, *rest, ) = dropout_layer_norm.dropout_add_ln_fwd( hidden_states, residual, self.weight, self.bias, None, None, None, None, 0.0, self.eps, 1.0, 0, None, False, False, ) if residual is None: residual = hidden_states return normed_hidden_states, residual except ImportError: pass try: from flash_attn.layers.rotary import RotaryEmbedding import rotary_emb class PositionRotaryEmbedding(RotaryEmbedding): def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) def get_cos_sin( self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype ): """ Return cos and sin for the asked position ids """ self._update_cos_sin_cache(dtype, position_ids.device, max_s) cos = torch.index_select(self._cos_cached, 0, position_ids) sin = torch.index_select(self._sin_cached, 0, position_ids) return cos.unsqueeze(1), sin.unsqueeze(1) def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor): rotary_dim = cos.shape[-1] x1 = x[..., :rotary_dim] x2 = x[..., rotary_dim : 2 * rotary_dim] rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False) return x except ImportError: pass