# LLM Text Generation Inference
![architecture](assets/architecture.jpg)
A Rust and gRPC server for large language models text generation inference. ## Features - Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) - [Dynamic bathing of incoming requests](https://github.com/huggingface/text-generation-inference/blob/main/router/src/batcher.rs#L88) for increased total throughput - [Safetensors](https://github.com/huggingface/safetensors) weight loading - 45ms per token generation for BLOOM with 8xA100 80GB ## Supported models - BLOOM - BLOOM-560m ## Load Tests for BLOOM See `k6/load_test.js` | | avg | min | med | max | p(90) | p(95) | RPS | |--------------------------------------------------------------|-----------|--------------|-----------|------------|-----------|-----------|----------| | [Original code](https://github.com/huggingface/transformers_bloom_parallel) | 8.9s | 1s | 9.12s | 16.69s | 13.7s | 14.26s | 5.9 | | New batching logic | **5.44s** | **959.53ms** | **5.28s** | **13.12s** | **7.78s** | **8.92s** | **9.08** | ## Install ```shell make install ``` ## Run ### BLOOM 560-m ```shell make run-bloom-560m ``` ### BLOOM First you need to download the weights: ```shell make download-bloom ``` ```shell make run-bloom # Requires 8xA100 80GB ``` You can also quantize the weights with bitsandbytes to reduce the VRAM requirement: ```shell make run-bloom-quantize # Requires 8xA100 40GB ``` ## Test ```shell curl 127.0.0.1:3000/generate \ -v \ -X POST \ -d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \ -H 'Content-Type: application/json' ``` ## Develop ```shell make server-dev make router-dev ``` ## TODO: - [ ] Add tests for the `server/model` logic - [ ] Backport custom CUDA kernels to Transformers - [ ] Install safetensors with pip