import torch import torch.distributed from accelerate import init_empty_weights from opentelemetry import trace from safetensors import safe_open from transformers import AutoTokenizer, AutoConfig from typing import Optional, List from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_neox_modeling import ( FlashGPTNeoXForCausalLM, TensorParallelEmbedding, TensorParallelRowLinear, TensorParallelColumnLinear, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, ) tracer = trace.get_tracer(__name__) class FlashNeoX(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, trust_remote_code: bool = False, ): super(FlashNeoX, self).__init__( FlashGPTNeoXForCausalLM, model_id, revision, quantize, trust_remote_code=trust_remote_code, ) class FlashNeoXSharded(FlashNeoX): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 else: raise NotImplementedError("FlashNeoX is only available on GPU") tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") with init_empty_weights(): model = FlashGPTNeoXForCausalLM(config, self.process_group) torch.distributed.barrier(group=self.process_group) self.load_weights( model, filenames, quantize=quantize, device=device, dtype=dtype, rank=rank, world_size=world_size, ) torch.distributed.barrier(group=self.process_group) super(FlashCausalLM, self).__init__( model=model.to(device), tokenizer=tokenizer, requires_padding=False, dtype=dtype, device=device, rank=rank, world_size=world_size, ) @staticmethod def load_weights( model, filenames: List[str], quantize: Optional[str], device: torch.device, dtype: torch.dtype, rank: int, world_size: int, ): parameters = dict(model.named_parameters()) for file in filenames: with safe_open( file, framework="pt", device=str(device) if quantize is None else "cpu" ) as f: for name in f.keys(): module_name, param_name = name.rsplit(".", 1) module = model.get_submodule(module_name) current_parameter_tensor = parameters.get(name, None) slice_ = f.get_slice(name) if isinstance(module, TensorParallelColumnLinear): size = slice_.get_shape()[0] block_size = size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = slice_[start:stop] elif isinstance(module, TensorParallelRowLinear): if param_name == "weight": size = slice_.get_shape()[1] block_size = size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = slice_[:, start:stop] else: tensor = slice_[:] # XXX: Hack for Rowlinear to add the bias only once. if rank != 0: tensor = torch.zeros_like(tensor) elif isinstance(module, TensorParallelEmbedding): size = slice_.get_shape()[0] block_size = size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = slice_[start:stop] elif name == "embed_out.weight" and model.gpt_neox.tp_embeddings: size = slice_.get_shape()[0] block_size = size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = slice_[start:stop] else: try: tensor = slice_[:] except: tensor = f.get_tensor(name) if ( current_parameter_tensor is not None and current_parameter_tensor.shape != tensor.shape ): raise ValueError( f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}" ) tensor = tensor.contiguous().to(dtype) if current_parameter_tensor is not None: module._parameters[param_name] = tensor else: module._buffers[param_name] = tensor model.post_load_weights(quantize)