import re import torch from transformers import ( LogitsProcessorList, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper, TypicalLogitsWarper, RepetitionPenaltyLogitsProcessor, PreTrainedTokenizerBase, ) from typing import List, Tuple, Optional from text_generation_server.pb import generate_pb2 from text_generation_server.pb.generate_pb2 import FinishReason from text_generation_server.utils.watermark import WatermarkLogitsProcessor class Sampling: def __init__(self, seed: int, device: str = "cpu"): self.generator = torch.Generator(device) self.generator.manual_seed(seed) self.seed = seed def __call__(self, logits): probs = torch.nn.functional.softmax(logits) next_tokens = torch.multinomial(probs, num_samples=1, generator=self.generator) return next_tokens class Greedy: def __call__(self, logits): return logits.argmax() class NextTokenChooser: def __init__( self, watermark=False, temperature=1.0, repetition_penalty=1.0, top_k=None, top_p=None, typical_p=None, do_sample=False, seed=0, device="cpu", ): warpers = LogitsProcessorList() # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files # all samplers can be found in `generation_utils_samplers.py` sampling = do_sample if watermark: warpers.append(WatermarkLogitsProcessor(device=device)) if repetition_penalty is not None and repetition_penalty != 1.0: warpers.append(RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty)) if temperature is not None and temperature != 1.0: temperature = float(temperature) warpers.append(TemperatureLogitsWarper(temperature)) sampling = True if top_k is not None and top_k != 0: warpers.append(TopKLogitsWarper(top_k=top_k)) sampling = True if top_p is not None and top_p < 1.0: warpers.append(TopPLogitsWarper(top_p=top_p)) sampling = True if typical_p is not None and typical_p < 1.0: warpers.append(TypicalLogitsWarper(mass=typical_p)) sampling = True self.warpers = warpers self.choice = Sampling(seed, device) if sampling else Greedy() def __call__(self, input_ids, scores): # Warp logits scores = self.warpers(input_ids, scores) # Compute logprobs logprobs = torch.log_softmax(scores, -1) # Choose tokens next_id = self.choice(scores[-1]) return next_id.view(1, 1), logprobs @classmethod def from_pb( cls, pb: generate_pb2.NextTokenChooserParameters, device: torch.device, ) -> "NextTokenChooser": return NextTokenChooser( watermark=pb.watermark, temperature=pb.temperature, repetition_penalty=pb.repetition_penalty, top_k=pb.top_k, top_p=pb.top_p, typical_p=pb.typical_p, do_sample=pb.do_sample, seed=pb.seed, device=device, ) class StopSequenceCriteria: def __init__(self, stop_sequence: str): self.regex = re.compile(f".*{stop_sequence}$") def __call__(self, output: str) -> bool: if self.regex.findall(output): return True return False class StoppingCriteria: def __init__( self, eos_token_id: int, stop_sequence_criterias: List[StopSequenceCriteria], max_new_tokens=20, ): self.eos_token_id = eos_token_id self.stop_sequence_criterias = stop_sequence_criterias self.max_new_tokens = max_new_tokens self.current_tokens = 0 self.current_output = "" def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]: self.current_tokens += 1 if self.current_tokens >= self.max_new_tokens: return True, FinishReason.FINISH_REASON_LENGTH if last_token == self.eos_token_id: return True, FinishReason.FINISH_REASON_EOS_TOKEN self.current_output += last_output for stop_sequence_criteria in self.stop_sequence_criterias: if stop_sequence_criteria(self.current_output): return True, FinishReason.FINISH_REASON_STOP_SEQUENCE return False, None @classmethod def from_pb( cls, pb: generate_pb2.StoppingCriteriaParameters, tokenizer: PreTrainedTokenizerBase, ) -> "StoppingCriteria": stop_sequence_criterias = [ StopSequenceCriteria(sequence) for sequence in pb.stop_sequences ] return StoppingCriteria( tokenizer.eos_token_id, stop_sequence_criterias, pb.max_new_tokens )