import math import numpy as np import torch import torch.nn as nn import intel_extension_for_pytorch as ipex class QuantLinear(nn.Module): def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize): super().__init__() self.register_buffer("qweight", qweight) self.register_buffer("qzeros", qzeros) self.register_buffer("scales", scales) self.register_buffer("g_idx", g_idx) if bias is not None: self.register_buffer("bias", bias) else: self.bias = None if bits not in [4]: raise NotImplementedError("Only 4 bits are supported.") self.bits = bits self.maxq = 2**self.bits - 1 self.groupsize = groupsize self.outfeatures = qweight.shape[1] self.infeatures = qweight.shape[0] * 32 // bits self.woq_linear = ( ipex.llm.quantization.IPEXWeightOnlyQuantizedLinear.from_weight( self.qweight, self.scales, self.qzeros, self.infeatures, self.outfeatures, bias=self.bias, group_size=self.groupsize, g_idx=g_idx, quant_method=ipex.llm.quantization.QuantMethod.GPTQ_GEMM, dtype=ipex.llm.quantization.QuantDtype.INT4, ) ) @classmethod def new(cls, bits, groupsize, infeatures, outfeatures, bias): if bits not in [4]: raise NotImplementedError("Only 4 bits are supported.") qweight = torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int32) qzeros = torch.zeros( (math.ceil(infeatures / groupsize), outfeatures // 32 * bits), dtype=torch.int32, ) scales = torch.zeros( (math.ceil(infeatures / groupsize), outfeatures), dtype=torch.float16 ) g_idx = torch.tensor( [i // groupsize for i in range(infeatures)], dtype=torch.int32 ) if bias: bias = torch.zeros((outfeatures), dtype=torch.float16) else: bias = None return cls(qweight, qzeros, scales, g_idx, bias, bits, groupsize) def pack(self, linear, scales, zeros, g_idx=None): self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales self.scales = scales.clone().half() if linear.bias is not None: self.bias = linear.bias.clone().half() intweight = [] for idx in range(self.infeatures): intweight.append( torch.round( (linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]] ).to(torch.int)[:, None] ) intweight = torch.cat(intweight, dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) qweight = np.zeros( (intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32 ) i = 0 row = 0 while row < qweight.shape[0]: if self.bits in [4]: for j in range(i, i + (32 // self.bits)): qweight[row] |= intweight[j] << (self.bits * (j - i)) i += 32 // self.bits row += 1 else: raise NotImplementedError("Only 4 bits are supported.") qweight = qweight.astype(np.int32) self.qweight = torch.from_numpy(qweight) zeros -= 1 zeros = zeros.numpy().astype(np.uint32) qzeros = np.zeros( (zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32 ) i = 0 col = 0 while col < qzeros.shape[1]: if self.bits in [4]: for j in range(i, i + (32 // self.bits)): qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) i += 32 // self.bits col += 1 else: raise NotImplementedError("Only 4 bits are supported.") qzeros = qzeros.astype(np.int32) self.qzeros = torch.from_numpy(qzeros) def forward(self, x): out_shape = x.shape[:-1] + (self.outfeatures,) out = self.woq_linear(x.reshape(-1, x.shape[-1])) return out.reshape(out_shape)