// // Created by mfuntowicz on 10/23/24. // #ifndef TGI_LLAMA_CPP_BACKEND_FFI_HPP #define TGI_LLAMA_CPP_BACKEND_FFI_HPP #include #include #include #include #include #include namespace huggingface::tgi::backends::llamacpp { class llama_cpp_worker_frontend_t; } #include "backend.hpp" #include "backends/llamacpp/src/lib.rs.h" #include "rust/cxx.h" namespace huggingface::tgi::backends::llamacpp { auto llama_model_deleter = [](llama_model *model) { llama_free_model(model); }; auto make_shared_llama_model = [](llama_model *model) { return std::shared_ptr(model, llama_model_deleter); }; class llama_cpp_backend_exception_t : std::exception {}; /** * Llama.cpp frontend over the worker interfacing with Rust FFI layer */ class llama_cpp_worker_frontend_t { private: std::shared_ptr model_; worker_t worker_; public: explicit llama_cpp_worker_frontend_t(llama_model *model): model_{ make_shared_llama_model(model) }, worker_(model_, {.no_perf = true}) {} size_t stream( rust::Slice input_tokens, const generation_params_t generation_params, const sampling_params_t &sampling_params, InferContext *ctx, rust::Fn callback ) { // Wrapper around the provided Rust callback to inject the InferContext when returning from the C++ FFI boundaries // It captures the context (ctx) using reference and will automatically call the Rust callback forwarding the InferContext auto context_forwarding_callback = [=, &ctx](uint32_t new_token_id, float_t logits, bool is_eos, size_t n_generated_tokens) -> bool { return callback(ctx, new_token_id, logits, is_eos, n_generated_tokens); }; // Ask the compiler to create view over Rust slice transmuting from uint32_t* to llama_token* static auto as_llama_token = [](const uint32_t x){ return static_cast(x); }; #ifdef __cpp_lib_ranges_to_container auto input_tokens_v = input_tokens | std::views::transform(as_llama_token) | std::ranges::to(); #else auto input_tokens_ = input_tokens | std::views::transform(as_llama_token); auto input_tokens_v = std::vector(input_tokens_.begin(), input_tokens_.end()); #endif // Defer the generation to the actual worker_t const auto generation_context = generation_context_t {generation_params, sampling_params, input_tokens_v}; if(const auto result = worker_.generate(generation_context, context_forwarding_callback); result.has_value()) [[likely]] { return *result; } else { throw llama_cpp_backend_exception_t {}; } } }; std::unique_ptr create_worker_frontend(rust::Str modelPath) { // Initialize the numa context from numactl static const bool INITIALIZED_NUMA_CONTEXT_ONCE = [](){ llama_numa_init(GGML_NUMA_STRATEGY_NUMACTL); return true; }(); // Allocate model weights parameters auto params = llama_model_default_params(); params.use_mmap = true; // Allocate the model from the Rust provided, string path auto *model = (llama_load_model_from_file(static_cast(modelPath).c_str(), params)); return std::make_unique(model); } } #endif //TGI_LLAMA_CPP_BACKEND_FFI_HPP