#include #include #include #include #include #include "backend.h" #include "hardware.h" void huggingface::tgi::backends::InitializeLogging() { #ifdef NDEBUG if (const auto TRTLLM_LOG_LEVEL_CSTR = std::getenv("TRTLLM_LOG_LEVEL")) { std::string log_level(TRTLLM_LOG_LEVEL_CSTR); std::transform(log_level.begin(), log_level.end(), log_level.begin(), [](unsigned char c) { return std::tolower(c); }); if (log_level == "debug") spdlog::set_level(spdlog::level::debug); else spdlog::set_level(spdlog::level::info); } #else spdlog::set_level(spdlog::level::debug); #endif } void huggingface::tgi::backends::InitializeBackend() { SPDLOG_INFO("Initializing Backend..."); nvmlInit_v2(); initTrtLlmPlugins(); InitializeLogging(); SPDLOG_INFO("Backend Executor Version: {}", tle::version()); const auto numGpus = huggingface::hardware::cuda::GetNumDevices(); if (numGpus.has_value()) { SPDLOG_INFO("Detected {:d} Nvidia GPU(s)", numGpus.value()); } else { SPDLOG_WARN("Failed to detected Nvidia GPU(s) on the system"); } } [[nodiscard]] tle::ParallelConfig huggingface::tgi::backends::GetParallelConfig(const size_t worldSize, const std::string workerPath) noexcept { auto mode = tle::CommunicationMode::kLEADER; std::optional orchestratorConfig = std::nullopt; if (worldSize > 1) { SPDLOG_INFO("Detected sharded engine deployment, using orchestrator mode"); mode = tle::CommunicationMode::kORCHESTRATOR; orchestratorConfig = std::make_optional(true, workerPath, nullptr, true); } else { SPDLOG_INFO("Detected single engine deployment, using leader mode"); } return tle::ParallelConfig(tle::CommunicationType::kMPI, mode, std::nullopt, std::nullopt, orchestratorConfig); } [[nodiscard]] tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) { tle::ExecutorConfig execConfig(/* maxBeamWidth = */ 1); // Retrieve the compute capabilities to enable some options at runtime const auto computeCapabilities = huggingface::hardware::cuda::GetCudaComputeCapabilities(); // Single engine (TP = PP = 1) -> using leader mode (no MPI involved) const auto worldSize = config["/pretrained_config/mapping/world_size"_json_pointer].get(); execConfig.setParallelConfig(GetParallelConfig(worldSize, workerPath)); // Define some configuration variables execConfig.setKvCacheConfig(tle::KvCacheConfig(true)); execConfig.setEnableChunkedContext(computeCapabilities.IsPostAmpere()); execConfig.setSchedulerConfig(tle::SchedulerConfig(tle::CapacitySchedulerPolicy::kMAX_UTILIZATION)); return execConfig; } tle::SamplingConfig huggingface::tgi::backends::GetSamplingConfig( const uint32_t topK, const float_t topP, const float_t temperature, const float_t repetition_penalty, const float_t frequency_penalty, const uint64_t seed) noexcept { return tle::SamplingConfig( 1, // TGI only use a single beam topK, topP, std::nullopt, std::nullopt, std::nullopt, seed, temperature, temperature, std::nullopt, repetition_penalty, std::nullopt, frequency_penalty ); } std::optional>> huggingface::tgi::backends::GetStopWordsFromConfig( const std::filesystem::path &generationConfigPath) noexcept { if (exists(generationConfigPath)) { const auto generationConfig = json::parse(std::ifstream(generationConfigPath)); if (const auto eosTokenIds = generationConfig["/eos_token_id"_json_pointer]; eosTokenIds.is_array()) { SPDLOG_INFO(FMT_STRING("Found {:d} EOS tokens"), eosTokenIds.size()); std::list> stopWords(eosTokenIds.size()); const auto to_single_token = [](const auto tokenIdObj) -> decltype(stopWords)::value_type { return {tokenIdObj.template get()}; }; std::transform(eosTokenIds.cbegin(), eosTokenIds.cend(), stopWords.begin(), to_single_token); return stopWords; } else { SPDLOG_INFO("Invalid EOS tokens entry found (not an array)"); } } else { SPDLOG_INFO("No EOS tokens found, generation_config.json doesn't exist"); } return std::nullopt; } huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend( const std::filesystem::path &enginesFolder, const std::filesystem::path &executorWorker ) : config(json::parse(std::ifstream(enginesFolder / "config.json"))), executor(enginesFolder, tensorrt_llm::executor::ModelType::kDECODER_ONLY, GetExecutorConfig(config, executorWorker.string())) { SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get()); // Ensure we have enough GPUs on the system const auto worldSize = config["/pretrained_config/mapping/world_size"_json_pointer].get(); const auto numGpus = huggingface::hardware::cuda::GetNumDevices().value_or(0); if (numGpus < worldSize) { SPDLOG_CRITICAL(FMT_NOT_ENOUGH_GPUS, numGpus, worldSize); // todo : raise exception to catch on rust side } // Cache variables maxNumTokens = config["/build_config/max_num_tokens"_json_pointer].get(); // Attempt to discover stopWords from the generation_config.json const auto generationConfigPath = enginesFolder / "generation_config.json"; stopWords = GetStopWordsFromConfig(generationConfigPath).value_or(std::list>()); } [[nodiscard("Returned number of requests needs to be consumed")]] size_t huggingface::tgi::backends::TensorRtLlmBackend::NumResponsesReady() const { #ifdef NDEBUG return executor.getNumResponsesReady(); #else const auto numResponses = executor.getNumResponsesReady(); if (numResponses > 0) SPDLOG_INFO(FMT_STRING("Num responses ready: {:d}"), numResponses); return numResponses; #endif } [[nodiscard("Returned request id needs to be provided back to gather generated tokens")]] tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit( const std::vector &tokens, const uint32_t maxNewTokens, const int32_t topK, const float_t topP, const float_t temperature, const float_t repetitionPenalty, const float_t frequencyPenalty, const uint64_t seed ) { const auto maxNewTokensChecked = std::min(maxNewTokens, static_cast(maxNumTokens - tokens.size())); #ifndef NDEBUG { const auto &iterations = executor.getLatestIterationStats(); const auto &lastIteration = iterations.front(); SPDLOG_DEBUG(FMT_EXECUTOR_STATS, fmt::join(tokens, ", "), lastIteration.numActiveRequests); SPDLOG_DEBUG(FMT_SAMPLING_CONFIG, topK, topP, temperature, repetitionPenalty, frequencyPenalty, seed); SPDLOG_DEBUG(FMT_STRING("Asking for max_new_tokens={:d}"), maxNewTokensChecked); } #endif const auto sampling = GetSamplingConfig(topK, topP, temperature, repetitionPenalty, frequencyPenalty, seed); // Build the request auto request = tle::Request{tokens, CAST_SIZETYPE(maxNewTokensChecked), true, sampling, OUTPUT_CONFIG}; request.setStopWords(stopWords); // Submit to the executor for batching return executor.enqueueRequest(request); } std::vector huggingface::tgi::backends::TensorRtLlmBackend::PullNewTokens() { return executor.awaitResponses(); }