import torch import torch.distributed from opentelemetry import trace from transformers import AutoTokenizer, AutoConfig from typing import Optional, List import json import os from huggingface_hub import hf_hub_download from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_santacoder_modeling import ( FlashSantacoderForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) tracer = trace.get_tracer(__name__) class FlashSantacoderSharded(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashSantacoderSharded is only available on GPU") tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=True, ) config.quantize = quantize config.transpose = config.architectures[0].startswith("GPT2") torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group, aliases={"transformer.wte.weight": ["lm_head.weight"]}, ) if config.quantize == "gptq": weights._set_gptq_params(model_id) model = FlashSantacoderForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(FlashSantacoderSharded, self).__init__( model=model.to(device), tokenizer=tokenizer, num_layers=len(model.transformer.h), num_kv_heads=1, head_size=model.transformer.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, ) def decode(self, generated_ids: List[int]) -> str: # Do not skip special tokens as they are used for custom parsing rules of the generated text return self.tokenizer.decode( generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False )