import math import torch from typing import Optional from transformers.models.gpt2 import GPT2TokenizerFast from text_generation_server.models.cache_manager import BLOCK_SIZE from text_generation_server.models.flash_mistral import ( BaseFlashMistral, set_sliding_window, ) from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import ( Starcoder2Config, FlashStarcoder2ForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) # Starcoder2 has the same base as Mistral class FlashStarcoder2(BaseFlashMistral): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, use_medusa: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashStarcoder2 is only available on GPU") tokenizer = GPT2TokenizerFast.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = Starcoder2Config.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize config.use_medusa = use_medusa # Set context windows if config.sliding_window is not None: set_sliding_window( config.sliding_window, math.ceil(config.sliding_window / BLOCK_SIZE) ) torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights(filenames, device, dtype, process_group=self.process_group) if config.quantize in ["gptq", "awq"]: weights._set_gptq_params(model_id, revision) model = FlashStarcoder2ForCausalLM(config, weights) self.cuda_graphs = {} torch.distributed.barrier(group=self.process_group) super(BaseFlashMistral, self).__init__( model=model, tokenizer=tokenizer, num_layers=len(model.model.layers), num_kv_heads=model.model.num_key_value_heads, head_size=model.model.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, sliding_window=config.sliding_window, )