import asyncio import os import torch from grpc import aio from loguru import logger from grpc_reflection.v1alpha import reflection from pathlib import Path from typing import List, Optional from text_generation_server.cache import Cache from text_generation_server.interceptor import ExceptionInterceptor from text_generation_server.models import Model, get_model from text_generation_server.pb import generate_pb2_grpc, generate_pb2 from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer): def __init__(self, model: Model, cache: Cache, server_urls: List[str]): self.cache = cache self.model = model self.server_urls = server_urls # For some reason, inference_mode does not work well with GLOO which we use on CPU if model.device.type == "cuda": # Force inference mode for the lifetime of TextGenerationService self._inference_mode_raii_guard = torch._C._InferenceMode(True) async def Info(self, request, context): return self.model.info async def Health(self, request, context): if self.model.device.type == "cuda": torch.zeros((2, 2)).cuda() return generate_pb2.HealthResponse() async def ServiceDiscovery(self, request, context): return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls) async def ClearCache(self, request, context): if request.HasField("id"): self.cache.delete(request.id) else: self.cache.clear() return generate_pb2.ClearCacheResponse() async def FilterBatch(self, request, context): batch = self.cache.pop(request.batch_id) if batch is None: raise ValueError(f"Batch ID {request.batch_id} not found in cache.") filtered_batch = batch.filter(request.request_ids) self.cache.set(filtered_batch) return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb()) async def Warmup(self, request, context): if ( self.model.batch_type == IdeficsCausalLMBatch ): # Hack, i would rather use kwargs in the `from_pb` call batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device, ) else: batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.dtype, self.model.device ) max_supported_total_tokens = self.model.warmup(batch) return generate_pb2.WarmupResponse( max_supported_total_tokens=max_supported_total_tokens ) async def Prefill(self, request, context): if ( self.model.batch_type == IdeficsCausalLMBatch ): # Hack, i would rather use kwargs in the `from_pb` call batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device, ) else: batch = self.model.batch_type.from_pb( request.batch, self.model.tokenizer, self.model.dtype, self.model.device ) generations, next_batch = self.model.generate_token(batch) self.cache.set(next_batch) return generate_pb2.PrefillResponse( generations=[generation.to_pb() for generation in generations], batch=next_batch.to_pb() if next_batch else None, ) async def Decode(self, request, context): if len(request.batches) == 0: raise ValueError("Must provide at least one batch") batches = [] for batch_pb in request.batches: batch = self.cache.pop(batch_pb.id) if batch is None: raise ValueError(f"Batch ID {batch_pb.id} not found in cache.") batches.append(batch) if len(batches) == 0: raise ValueError("All batches are empty") if len(batches) > 1: batch = self.model.batch_type.concatenate(batches) else: batch = batches[0] generations, next_batch = self.model.generate_token(batch) self.cache.set(next_batch) return generate_pb2.DecodeResponse( generations=[generation.to_pb() for generation in generations], batch=next_batch.to_pb() if next_batch else None, ) def serve( model_id: str, revision: Optional[str], sharded: bool, quantize: Optional[str], dtype: Optional[str], trust_remote_code: bool, uds_path: Path, ): async def serve_inner( model_id: str, revision: Optional[str], sharded: bool = False, quantize: Optional[str] = None, dtype: Optional[str] = None, trust_remote_code: bool = False, ): unix_socket_template = "unix://{}-{}" if sharded: server_urls = [ unix_socket_template.format(uds_path, rank) for rank in range(int(os.environ["WORLD_SIZE"])) ] local_url = server_urls[int(os.environ["RANK"])] else: local_url = unix_socket_template.format(uds_path, 0) server_urls = [local_url] try: model = get_model( model_id, revision, sharded, quantize, dtype, trust_remote_code ) except Exception: logger.exception("Error when initializing model") raise if quantize == "gptq": try: # When using GPTQ, Exllama kernels need some global kernels # For which we have the finale shapes only after the model has loaded # This will allocate those buffers. from text_generation_server.utils.gptq.exllama import ( create_exllama_buffers, set_device, ) set_device(model.device) create_exllama_buffers() except ImportError: pass server = aio.server( interceptors=[ ExceptionInterceptor(), UDSOpenTelemetryAioServerInterceptor(), ] ) generate_pb2_grpc.add_TextGenerationServiceServicer_to_server( TextGenerationService(model, Cache(), server_urls), server ) SERVICE_NAMES = ( generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name, reflection.SERVICE_NAME, ) reflection.enable_server_reflection(SERVICE_NAMES, server) server.add_insecure_port(local_url) await server.start() logger.info("Server started at {}".format(local_url)) try: await server.wait_for_termination() except KeyboardInterrupt: logger.info("Signal received. Shutting down") await server.stop(0) asyncio.run( serve_inner(model_id, revision, sharded, quantize, dtype, trust_remote_code) )