import torch from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Dict, List, Optional, Union, Type from safetensors import safe_open from dataclasses import dataclass from text_generation_server.utils.import_utils import SYSTEM class WeightsLoader(ABC): """ Instances of this type implement higher-level weight loading. At a low-level, every weight is stored in the Safetensors format. The interpretation of weights may be different however, for instance could be packed, quantized weights. Loaders are responsible for interpreting the raw tensors, sharding tensors in a manner compatible with the format, etc. """ @abstractmethod def get_weights(self, weights: "Weights", prefix: str): """ Get weights at the given prefix and apply without tensor paralllism. """ ... @abstractmethod def get_weights_col_packed( self, weights: "Weights", prefix: str, block_sizes: Union[int, List[int]], ): """ Get the packed weights at the given prefix with column-splitting for tensor parallelism. This method should be used when multiple different weights are packed into a tensor, for instance, query/key/value weights or a gate/up projection. The `block_sizes` determines the proportions of the packed tensors. The columns are split in equally sized blocks when `block_sizes` is an `int`, or in blocks proportional given to the sizes. For instance `[2, 1, 1]` will divide an input with dimensionality `1024` in `[512, 256, 256]`. """ ... def get_weights_col(self, weights: "Weights", prefix: str): """ Get weights at the given prefix and apply column-splitting for tensor paralllism. """ return weights.get_multi_weights_col([prefix], 0) @abstractmethod def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int): """ Get the weights at the given prefixes, column-split them for tensor parallelim, and then concatenate the weights along the given dimension. """ ... @abstractmethod def get_weights_row(self, weights: "Weights", prefix: str): """ Get the weights at the given prefix and apply row-splitting for tensor parallism. """ ... class Weight(ABC): """Instances of this type implement unquantized/quantized/to-be quantized weights.""" @abstractmethod def get_linear(self, bias: torch.Tensor): """Create a linear layer from this weight.""" ... @dataclass class UnquantizedWeight(Weight): weight: torch.Tensor def get_linear(self, bias: torch.Tensor): from text_generation_server.layers.linear import FastLinear, FastLinearROCm if SYSTEM == "rocm": return FastLinearROCm(self.weight, bias) else: return FastLinear(self.weight, bias) class DefaultWeightsLoader(WeightsLoader): """Weight loader that loads (unquantized) Torch tensors.""" def __init__(self, weight_class: Type[UnquantizedWeight]): """Create a loader. Weights will be wrapped using the given `weights_class`, normally this will be `UnquantizedWeight`, but a quantizer-specific class such as `Fp8Weight` can be used to quantize the weights during loading. """ self.weight_class = weight_class """ Loader that uses tensors as-is with the exception of applying sharding and/or concatenation. """ def get_weights(self, weights: "Weights", prefix: str): return weights.get_tensor(f"{prefix}.weight") def get_weights_col_packed( self, weights: "Weights", prefix: str, block_sizes: Union[int, List[int]], ): return self.weight_class( weights.get_packed_sharded( f"{prefix}.weight", dim=0, block_sizes=block_sizes ), ) def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int): w = [weights.get_sharded(f"{p}.weight", dim=0) for p in prefixes] return self.weight_class(torch.cat(w, dim=dim)) def get_weights_row(self, weights: "Weights", prefix: str): return self.weight_class( weights.get_sharded(f"{prefix}.weight", dim=1), ) class Weights: def __init__( self, filenames: List[Path], device, dtype, process_group, weights_loader: WeightsLoader, aliases: Optional[Dict[str, List[str]]] = None, prefix: Optional[str] = None, ): routing = {} for filename in filenames: with safe_open(filename, framework="pytorch") as f: for k in f.keys(): if k in routing: raise RuntimeError( f"Key {k} was found in multiple files: {filename} and {routing[k]}" ) routing[k] = filename if aliases is None: aliases = {} self.aliases = aliases self.routing = routing self.device = device self.dtype = dtype self.process_group = process_group self.prefix = prefix self.weights_loader = weights_loader self._handles = {} def _get_handle(self, filename): if filename not in self._handles: f = safe_open(filename, framework="pytorch") self._handles[filename] = f return self._handles[filename] def get_filename(self, tensor_name: str) -> (str, str): names = [tensor_name] if self.prefix is not None: prefixed = f"{self.prefix}.{tensor_name}" names.append(prefixed) for name in names: filename = self.routing.get(name, None) if filename is not None: return str(filename), name aliases = self.aliases.get(name, []) for alias in aliases: filename = self.routing.get(alias, None) if filename is not None: return str(filename), alias raise RuntimeError(f"weight {tensor_name} does not exist") def _get_slice(self, tensor_name: str): filename, tensor_name = self.get_filename(tensor_name) f = self._get_handle(filename) slice_ = f.get_slice(tensor_name) return slice_ def _has_tensor(self, tensor_name: str): try: self.get_filename(tensor_name) except Exception: return False return True def get_shape(self, tensor_name: str): return self._get_slice(tensor_name).get_shape() def get_tensor(self, tensor_name: str, to_device=True, to_dtype=True): filename, tensor_name = self.get_filename(tensor_name) f = self._get_handle(filename) tensor = f.get_tensor(tensor_name) # Special case for gptq which shouldn't convert # u4 which are disguised as int32. Exl2 uses int16 # as well. FP8 uses torch.float8_e4m3fn if ( tensor.dtype not in [ torch.float8_e4m3fn, torch.int16, torch.int32, torch.int64, ] and to_dtype ): tensor = tensor.to(dtype=self.dtype) if to_device: tensor = tensor.to(device=self.device) return tensor def get_partial_sharded( self, tensor_name: str, dim: int, to_device=True, to_dtype=True ): filename, tensor_name = self.get_filename(tensor_name) f = self._get_handle(filename) slice_ = f.get_slice(tensor_name) world_size = self.process_group.size() rank = self.process_group.rank() size = slice_.get_shape()[dim] block_size = (size + world_size - 1) // world_size start = rank * block_size stop = (rank + 1) * block_size if dim == 0: tensor = slice_[start:stop] elif dim == 1: tensor = slice_[:, start:stop] else: raise NotImplementedError("Let's make that generic when needed") # Special case for gptq which shouldn't convert # u4 which are disguised as int32. exl2 uses int16. # FP8 uses torch.float8_e4m3fn. if ( tensor.dtype not in (torch.float8_e4m3fn, torch.int16, torch.int32) and to_dtype ): tensor = tensor.to(dtype=self.dtype) if to_device: tensor = tensor.to(device=self.device) return tensor def get_sharded(self, tensor_name: str, dim: int, to_device=True, to_dtype=True): filename, tensor_name = self.get_filename(tensor_name) f = self._get_handle(filename) slice_ = f.get_slice(tensor_name) world_size = self.process_group.size() size = slice_.get_shape()[dim] assert ( size % world_size == 0 ), f"The choosen size {size} is not compatible with sharding on {world_size} shards" return self.get_partial_sharded( tensor_name, dim, to_device=to_device, to_dtype=to_dtype ) def get_packed_sharded( self, tensor_name: str, dim: int, block_sizes: Union[int, List[int]], to_dtype=True, ) -> torch.Tensor: """ Get a shard from a tensor that packs multiple tensors. When a tensor packs multiple tensors (such as QKV or an up projection + gate projection), sharding with `get_sharded` is not safe since it would not split the packed tensors across shards. This method shards a tensor, such that the packed tensors are split across shards. The columns are split in equally sized blocks when blocks is an `int`, or in blocks proportional given to the sizes. For instance `[2, 1, 1]` will divide an input with dimensionality `1024` in `[512, 256, 256]`. This is convenient for e.g. splitting QKV without knowing the storage details of quantized weights. """ slice_ = self._get_slice(tensor_name) total_size = slice_.get_shape()[dim] block_sizes = _blocks_to_block_sizes(total_size=total_size, blocks=block_sizes) world_size = self.process_group.size() rank = self.process_group.rank() tensors = [] block_offset = 0 for block_size in block_sizes: assert ( block_size % world_size == 0 ), f"Prepacked tensor cannot be sharded across {world_size} shards" shard_block_size = block_size // world_size start = rank * shard_block_size stop = (rank + 1) * shard_block_size if dim == 0: tensor = slice_[block_offset + start : block_offset + stop] elif dim == 1: tensor = slice_[:, block_offset + start : block_offset + stop] else: raise NotImplementedError("Currently only dim=0 or dim=1 is supported") tensors.append(tensor) block_offset += block_size tensor = torch.cat(tensors, dim=dim) tensor = tensor.to(device=self.device) # Avoid casting quantizer dtypes. if ( tensor.dtype not in [ torch.float8_e4m3fn, torch.int16, torch.int32, torch.int64, ] and to_dtype ): tensor = tensor.to(dtype=self.dtype) return tensor def get_weights(self, prefix: str): return self.weights_loader.get_weights(self, prefix) def get_weights_col_packed_qkv( self, prefix: str, num_heads: int, num_key_value_heads: int, ): return self.get_weights_col_packed( prefix, [num_heads, num_key_value_heads, num_key_value_heads] ) def get_weights_col_packed_gate_up(self, prefix: str): return self.get_weights_col_packed(prefix, 2) def get_weights_col_packed(self, prefix: str, block_sizes: Union[int, List[int]]): """ The columns are split in equally sized blocks when blocks is an `int`, or in blocks proportional given to the sizes. For instance `[2, 1, 1]` will divide an input with dimensionality `1024` in `[512, 256, 256]`. This is convenient for e.g. splitting QKV without knowing the storage details of quantized weights. """ return self.weights_loader.get_weights_col_packed(self, prefix, block_sizes) def get_weights_col(self, prefix: str): return self.weights_loader.get_weights_col(self, prefix) def get_multi_weights_col(self, prefixes: List[str], dim: int): return self.weights_loader.get_multi_weights_col(self, prefixes, dim) def get_tensor_shard(self, var, dim): world_size = self.process_group.size() rank = self.process_group.rank() block_size = var.size()[dim] // world_size start = rank * block_size stop = (rank + 1) * block_size if dim == 0: tensor = var[start:stop] elif dim == 1: tensor = var[:, start:stop] else: raise NotImplementedError("Let's make that generic when needed") tensor = tensor.to(dtype=self.dtype) tensor = tensor.to(device=self.device) return tensor def get_weights_row(self, prefix: str): return self.weights_loader.get_weights_row(self, prefix) @contextmanager def use_loader(self, weights_loader: WeightsLoader): """ This method is a context manager that can be used to use `Weights` with a different loader for the duration of the context. """ old_loader = self.weights_loader self.weights_loader = weights_loader try: yield finally: self.weights_loader = old_loader def _blocks_to_block_sizes(total_size: int, blocks: Union[int, List[int]]) -> List[int]: """ Convert block count or proportions to block sizes. This function accepts - The number of blocks (int), in which case the block size is total_size//blocks; or - A list of block sizes (List[int]). In the latter case, if sum(blocks) < total_size, the ratios between the block sizes will be preserved. For instance, if blocks is [2, 1, 1] and total_size is 1024, the returned block sizes are [512, 256, 256]. """ if isinstance(blocks, list): total_blocks = sum(blocks) assert ( total_size % total_blocks == 0 ), f"Cannot split {total_size} in proportional blocks: {blocks}" part_size = total_size // total_blocks return [part_size * block for block in blocks] else: assert total_size % blocks == 0, f"Prepacked is not divisible by {blocks}" single_size = total_size // blocks return [single_size] * blocks