use clap::Parser; use text_generation_backends_trtllm::{errors::TensorRtLlmBackendError, TrtLLmBackend}; use text_generation_router::server; /// App Configuration #[derive(Parser, Debug)] #[clap(author, version, about, long_about = None)] struct Args { #[clap(default_value = "128", long, env)] max_concurrent_requests: usize, #[clap(default_value = "2", long, env)] max_best_of: usize, #[clap(default_value = "4", long, env)] max_stop_sequences: usize, #[clap(default_value = "5", long, env)] max_top_n_tokens: u32, #[clap(default_value = "1024", long, env)] max_input_tokens: usize, #[clap(default_value = "2048", long, env)] max_total_tokens: usize, #[clap(default_value = "4096", long, env)] max_batch_prefill_tokens: u32, #[clap(long, env)] max_batch_total_tokens: Option, #[clap(default_value = "0.0.0.0", long, env)] hostname: String, #[clap(default_value = "3000", long, short, env)] port: u16, #[clap(default_value = "bigscience/bloom", long, env)] tokenizer_name: String, #[clap(long, env)] tokenizer_config_path: Option, #[clap(long, env)] revision: Option, #[clap(long, env)] model_id: String, #[clap(default_value = "2", long, env)] validation_workers: usize, #[clap(long, env)] json_output: bool, #[clap(long, env)] otlp_endpoint: Option, #[clap(default_value = "text-generation-inference.router", long, env)] otlp_service_name: String, #[clap(long, env)] cors_allow_origin: Option>, #[clap(long, env, default_value_t = false)] messages_api_enabled: bool, #[clap(default_value = "4", long, env)] max_client_batch_size: usize, } #[tokio::main] async fn main() -> Result<(), TensorRtLlmBackendError> { // Get args let args = Args::parse(); // Pattern match configuration let Args { max_concurrent_requests, max_best_of, max_stop_sequences, max_top_n_tokens, max_input_tokens, max_total_tokens, max_batch_prefill_tokens, max_batch_total_tokens, hostname, port, tokenizer_name, tokenizer_config_path, revision, model_id, validation_workers, json_output, otlp_endpoint, otlp_service_name, cors_allow_origin, messages_api_enabled, max_client_batch_size, } = args; // Launch Tokio runtime text_generation_router::logging::init_logging(otlp_endpoint, otlp_service_name, json_output); // Validate args if max_input_tokens >= max_total_tokens { return Err(TensorRtLlmBackendError::ArgumentValidation( "`max_input_tokens` must be < `max_total_tokens`".to_string(), )); } if max_input_tokens as u32 > max_batch_prefill_tokens { return Err(TensorRtLlmBackendError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {max_batch_prefill_tokens} and {max_input_tokens}"))); } if validation_workers == 0 { return Err(TensorRtLlmBackendError::ArgumentValidation( "`validation_workers` must be > 0".to_string(), )); } if let Some(ref max_batch_total_tokens) = max_batch_total_tokens { if max_batch_prefill_tokens > *max_batch_total_tokens { return Err(TensorRtLlmBackendError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {max_batch_prefill_tokens} and {max_batch_total_tokens}"))); } if max_total_tokens as u32 > *max_batch_total_tokens { return Err(TensorRtLlmBackendError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_batch_total_tokens}"))); } } // Run server let backend = TrtLLmBackend::new(model_id)?; server::run( backend, max_concurrent_requests, max_best_of, max_stop_sequences, max_top_n_tokens, max_input_tokens, max_total_tokens, validation_workers, tokenizer_name, tokenizer_config_path, revision, hostname, port, cors_allow_origin, false, None, None, messages_api_enabled, true, max_client_batch_size, ) .await?; Ok(()) }