import torch import torch.distributed from typing import List, Optional, Tuple from transformers import ( AutoTokenizer, AutoConfig, ) from text_generation_server.models import Seq2SeqLM from text_generation_server.models.custom_modeling.t5_modeling import ( T5ForConditionalGeneration, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class T5Sharded(Seq2SeqLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, use_medusa: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, ) config.quantize = quantize config.use_medusa = use_medusa tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) tokenizer.bos_token_id = config.decoder_start_token_id torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group, aliases={ "shared.weight": [ "encoder.embed_tokens.weight", "decoder.embed_tokens.weight", ] }, ) model = T5ForConditionalGeneration(config, weights) torch.distributed.barrier(group=self.process_group) super(Seq2SeqLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) def forward( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask: Optional, encoder_last_hidden_state: Optional, past_key_values: Optional = None, ) -> Tuple[ torch.Tensor, torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]], ]: # Model Forward outputs, speculative_logits = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_last_hidden_state, past_key_values=past_key_values, use_cache=True, ) return ( outputs.logits, speculative_logits, outputs.encoder_last_hidden_state, outputs.past_key_values, )