#include "gptq_marlin.cuh" namespace gptq_marlin { static constexpr int repack_stages = 8; static constexpr int repack_threads = 256; static constexpr int tile_k_size = tile_size; static constexpr int tile_n_size = tile_k_size * 4; #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 template __global__ void marlin_repack_kernel( uint32_t const* __restrict__ b_q_weight_ptr, uint32_t const* __restrict__ perm_ptr, uint32_t* __restrict__ out_ptr, int size_k, int size_n) {} } // namespace gptq_marlin torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, int64_t size_k, int64_t size_n, int64_t num_bits) { TORCH_CHECK_NOT_IMPLEMENTED( false, "marlin_repack_from_gptq(..) requires CUDA_ARCH >= 8.0"); return torch::empty({1, 1}); } #else template __global__ void marlin_repack_kernel( uint32_t const* __restrict__ b_q_weight_ptr, uint32_t const* __restrict__ perm_ptr, uint32_t* __restrict__ out_ptr, int size_k, int size_n) { constexpr int pack_factor = 32 / num_bits; int k_tiles = size_k / tile_k_size; int n_tiles = size_n / tile_n_size; int block_k_tiles = div_ceil(k_tiles, gridDim.x); int start_k_tile = blockIdx.x * block_k_tiles; if (start_k_tile >= k_tiles) { return; } int finish_k_tile = min(start_k_tile + block_k_tiles, k_tiles); // Wait until the next thread tile has been loaded to shared memory. auto wait_for_stage = [&]() { // We only have `stages - 2` active fetches since we are double buffering // and can only issue the next fetch when it is guaranteed that the previous // shared memory load is fully complete (as it may otherwise be // overwritten). cp_async_wait(); __syncthreads(); }; extern __shared__ int4 sh[]; constexpr int perm_size = tile_k_size / 4; int4* sh_perm_ptr = sh; int4* sh_pipe_ptr = sh_perm_ptr; if constexpr (has_perm) { sh_pipe_ptr += perm_size; } constexpr int tile_ints = tile_k_size / pack_factor; constexpr int stage_n_threads = tile_n_size / 4; constexpr int stage_k_threads = has_perm ? tile_k_size : tile_ints; constexpr int stage_size = stage_k_threads * stage_n_threads; auto load_perm_to_shared = [&](int k_tile_id) { int first_k_int4 = (k_tile_id * tile_k_size) / 4; int4 const* perm_int4_ptr = reinterpret_cast(perm_ptr); if (threadIdx.x < perm_size) { sh_perm_ptr[threadIdx.x] = perm_int4_ptr[first_k_int4 + threadIdx.x]; } __syncthreads(); }; auto fetch_to_shared = [&](int pipe, int k_tile_id, int n_tile_id) { if (n_tile_id >= n_tiles) { cp_async_fence(); return; } int first_n = n_tile_id * tile_n_size; int4* sh_ptr = sh_pipe_ptr + stage_size * pipe; if constexpr (has_perm) { if (threadIdx.x < stage_size) { int k_id = threadIdx.x / stage_n_threads; int n_id = threadIdx.x % stage_n_threads; uint32_t const* sh_perm_int_ptr = reinterpret_cast(sh_perm_ptr); int src_k = sh_perm_int_ptr[k_id]; int src_k_packed = src_k / pack_factor; cp_async4( &sh_ptr[k_id * stage_n_threads + n_id], reinterpret_cast(&( b_q_weight_ptr[src_k_packed * size_n + first_n + (n_id * 4)]))); } } else { if (threadIdx.x < stage_size) { int k_id = threadIdx.x / stage_n_threads; int n_id = threadIdx.x % stage_n_threads; int first_k = k_tile_id * tile_k_size; int first_k_packed = first_k / pack_factor; cp_async4(&sh_ptr[k_id * stage_n_threads + n_id], reinterpret_cast( &(b_q_weight_ptr[(first_k_packed + k_id) * size_n + first_n + (n_id * 4)]))); } } cp_async_fence(); }; auto repack_tile = [&](int pipe, int k_tile_id, int n_tile_id) { if (n_tile_id >= n_tiles) { return; } int warp_id = threadIdx.x / 32; int th_id = threadIdx.x % 32; if (warp_id >= 4) { return; } int tc_col = th_id / 4; int tc_row = (th_id % 4) * 2; constexpr int tc_offsets[4] = {0, 1, 8, 9}; int cur_n = warp_id * 16 + tc_col; constexpr int sh_stride = 64; constexpr uint32_t mask = (1 << num_bits) - 1; int4* sh_stage_ptr = sh_pipe_ptr + stage_size * pipe; uint32_t* sh_stage_int_ptr = reinterpret_cast(sh_stage_ptr); uint32_t* sh_perm_int_ptr = reinterpret_cast(sh_perm_ptr); uint32_t vals[8]; if constexpr (has_perm) { for (int i = 0; i < 4; i++) { int k_idx = tc_row + tc_offsets[i]; uint32_t src_k = sh_perm_int_ptr[k_idx]; uint32_t src_k_pos = src_k % pack_factor; uint32_t b1_val = sh_stage_int_ptr[k_idx * sh_stride + cur_n]; uint32_t b1_cur_val = (b1_val >> (src_k_pos * num_bits)) & mask; uint32_t b2_val = sh_stage_int_ptr[k_idx * sh_stride + cur_n + 8]; uint32_t b2_cur_val = (b2_val >> (src_k_pos * num_bits)) & mask; vals[i] = b1_cur_val; vals[4 + i] = b2_cur_val; } } else { uint32_t b1_vals[tile_ints]; uint32_t b2_vals[tile_ints]; #pragma unroll for (int i = 0; i < tile_ints; i++) { b1_vals[i] = sh_stage_int_ptr[cur_n + sh_stride * i]; b2_vals[i] = sh_stage_int_ptr[cur_n + 8 + sh_stride * i]; } #pragma unroll for (int i = 0; i < 4; i++) { int cur_elem = tc_row + tc_offsets[i]; int cur_int = cur_elem / pack_factor; int cur_pos = cur_elem % pack_factor; vals[i] = (b1_vals[cur_int] >> (cur_pos * num_bits)) & mask; vals[4 + i] = (b2_vals[cur_int] >> (cur_pos * num_bits)) & mask; } } constexpr int tile_size = tile_k_size * tile_n_size / pack_factor; int out_offset = (k_tile_id * n_tiles + n_tile_id) * tile_size; // Result of: // https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h if constexpr (num_bits == 4) { constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7}; uint32_t res = 0; #pragma unroll for (int i = 0; i < 8; i++) { res |= vals[pack_idx[i]] << (i * 4); } out_ptr[out_offset + th_id * 4 + warp_id] = res; } else { constexpr int pack_idx[4] = {0, 2, 1, 3}; uint32_t res1 = 0; uint32_t res2 = 0; #pragma unroll for (int i = 0; i < 4; i++) { res1 |= vals[pack_idx[i]] << (i * 8); res2 |= vals[4 + pack_idx[i]] << (i * 8); } out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 0] = res1; out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 1] = res2; } }; auto start_pipes = [&](int k_tile_id, int n_tile_id) { #pragma unroll for (int pipe = 0; pipe < repack_stages - 1; pipe++) { fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe); } wait_for_stage(); }; #pragma unroll for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) { int n_tile_id = 0; if constexpr (has_perm) { load_perm_to_shared(k_tile_id); } start_pipes(k_tile_id, n_tile_id); while (n_tile_id < n_tiles) { #pragma unroll for (int pipe = 0; pipe < repack_stages; pipe++) { fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id, n_tile_id + pipe + repack_stages - 1); repack_tile(pipe, k_tile_id, n_tile_id + pipe); wait_for_stage(); } n_tile_id += repack_stages; } } } } // namespace gptq_marlin #define CALL_IF(NUM_BITS, HAS_PERM) \ else if (num_bits == NUM_BITS && has_perm == HAS_PERM) { \ cudaFuncSetAttribute( \ gptq_marlin::marlin_repack_kernel, \ cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ gptq_marlin::marlin_repack_kernel \ <<>>( \ b_q_weight_ptr, perm_ptr, out_ptr, size_k, size_n); \ } torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, int64_t size_k, int64_t size_n, int64_t num_bits) { // Verify compatibility with marlin tile of 16x64 TORCH_CHECK(size_k % gptq_marlin::tile_k_size == 0, "size_k = ", size_k, " is not divisible by tile_k_size = ", gptq_marlin::tile_k_size); TORCH_CHECK(size_n % gptq_marlin::tile_n_size == 0, "size_n = ", size_n, " is not divisible by tile_n_size = ", gptq_marlin::tile_n_size); TORCH_CHECK(num_bits == 4 || num_bits == 8, "num_bits must be 4 or 8. Got = ", num_bits); int const pack_factor = 32 / num_bits; // Verify B TORCH_CHECK((size_k / pack_factor) == b_q_weight.size(0), "Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0), ", size_k = ", size_k, ", pack_factor = ", pack_factor); TORCH_CHECK(b_q_weight.size(1) == size_n, "b_q_weight.size(1) = ", b_q_weight.size(1), " is not size_n = ", size_n); // Verify device and strides TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU"); TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous"); TORCH_CHECK(b_q_weight.dtype() == at::kInt, "b_q_weight type is not kInt"); TORCH_CHECK(perm.device().is_cuda(), "perm is not on GPU"); TORCH_CHECK(perm.is_contiguous(), "perm is not contiguous"); TORCH_CHECK(perm.dtype() == at::kInt, "perm type is not at::kInt"); // Alloc buffers const at::cuda::OptionalCUDAGuard device_guard(device_of(b_q_weight)); auto options = torch::TensorOptions() .dtype(b_q_weight.dtype()) .device(b_q_weight.device()); torch::Tensor out = torch::empty({size_k / gptq_marlin::tile_size, size_n * gptq_marlin::tile_size / pack_factor}, options); // Detect if there is act_order bool has_perm = perm.size(0) != 0; // Get ptrs uint32_t const* b_q_weight_ptr = reinterpret_cast(b_q_weight.data_ptr()); uint32_t const* perm_ptr = reinterpret_cast(perm.data_ptr()); uint32_t* out_ptr = reinterpret_cast(out.data_ptr()); // Get dev info int dev = b_q_weight.get_device(); cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev); int blocks; cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev); int max_shared_mem = 0; cudaDeviceGetAttribute(&max_shared_mem, cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); TORCH_CHECK(max_shared_mem > 0); if (false) { } CALL_IF(4, false) CALL_IF(4, true) CALL_IF(8, false) CALL_IF(8, true) else { TORCH_CHECK(false, "Unsupported repack config: num_bits = ", num_bits, ", has_perm = ", has_perm); } return out; } #endif