import os import torch import torch.distributed from torch import nn from torch.nn import functional as F from typing import List from loguru import logger from functools import lru_cache HAS_BITS_AND_BYTES = True try: import bitsandbytes as bnb from bitsandbytes.nn import Int8Params, Params4bit except ImportError: HAS_BITS_AND_BYTES = False from accelerate import init_empty_weights from text_generation_server.utils.gptq.quant_linear import QuantLinear from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM from text_generation_server.utils.log import log_once HAS_AWQ = True try: from text_generation_server.utils.awq.quantize.qmodule import WQLinear except ImportError: HAS_AWQ = False try: major, _minor = torch.cuda.get_device_capability() except Exception: major = 1 HAS_EXLLAMA = False CAN_EXLLAMA = major >= 8 or IS_ROCM_SYSTEM V2 = os.getenv("EXLLAMA_VERSION", "2") == "2" # if V2 and int(os.getenv("WORLD_SIZE", "1")) > 1: # V2 = False # log_once( # logger.warning, # "Disabling exllama v2 and using v1 instead because there are issues when sharding", # ) if os.getenv("DISABLE_EXLLAMA") == "True": HAS_EXLLAMA = False elif CAN_EXLLAMA: try: if V2: from text_generation_server.utils.gptq.exllamav2 import ( QuantLinear as ExllamaQuantLinear, create_exllama_buffers, set_device, ) HAS_EXLLAMA = "2" else: from text_generation_server.utils.gptq.exllama import ( Ex4bitLinear as ExllamaQuantLinear, create_exllama_buffers, set_device, ) HAS_EXLLAMA = "1" except ImportError: pass HAS_EETQ = False try: from EETQ import quant_weights, w8_a16_gemm HAS_EETQ = True except ImportError: pass # Monkey patching @classmethod def load_layer_norm(cls, prefix, weights, eps): weight = weights.get_tensor(f"{prefix}.weight") bias = weights.get_tensor(f"{prefix}.bias") with init_empty_weights(): ln = cls(weight.shape, eps=eps) ln.weight = nn.Parameter(weight) ln.bias = nn.Parameter(bias) return ln @classmethod def load_layer_norm_no_bias(cls, prefix, weights, eps): weight = weights.get_tensor(f"{prefix}.weight") with init_empty_weights(): ln = cls(weight.shape, eps=eps) ln.weight = nn.Parameter(weight) ln.bias = None return ln @classmethod def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride): weight = weights.get_tensor(f"{prefix}.weight") bias = weights.get_tensor(f"{prefix}.bias") with init_empty_weights(): conv2d = cls( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, ) conv2d.weight = nn.Parameter(weight) conv2d.bias = nn.Parameter(bias) return conv2d @classmethod def load_conv2d_no_bias( cls, prefix, weights, in_channels, out_channels, kernel_size, stride ): weight = weights.get_tensor(f"{prefix}.weight") with init_empty_weights(): conv2d = cls( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, ) conv2d.weight = nn.Parameter(weight) conv2d.bias = None return conv2d torch.nn.Conv2d.load = load_conv2d torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias torch.nn.LayerNorm.load = load_layer_norm torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias class FastLinear(nn.Module): def __init__( self, weight, bias, ) -> None: super().__init__() self.weight = nn.Parameter(weight) if bias is not None: self.bias = nn.Parameter(bias) else: self.bias = None @classmethod def load(cls, config, prefix: str, weights, bias: bool): weight = weights.get_tensor(f"{prefix}.weight") if bias: bias = weights.get_tensor(f"{prefix}.bias") else: bias = None return cls(weight, bias) def forward(self, input: torch.Tensor) -> torch.Tensor: return F.linear(input, self.weight, self.bias) class EETQLinear(nn.Module): def __init__( self, weight, bias, ) -> None: super().__init__() device = weight.device weight = torch.t(weight).contiguous().cpu() weight, scale = quant_weights(weight, torch.int8, False) self.weight = weight.cuda(device) self.scale = scale.cuda(device) self.bias = bias.cuda(device) if bias is not None else None def forward(self, input: torch.Tensor) -> torch.Tensor: output = w8_a16_gemm(input, self.weight, self.scale) output = output + self.bias if self.bias is not None else output return output class Linear8bitLt(nn.Module): def __init__( self, weight, bias, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None, ): super().__init__() assert ( not memory_efficient_backward ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0" self.state = bnb.MatmulLtState() self.index = index # Necessary for stacked layers self.state.threshold = threshold self.state.has_fp16_weights = has_fp16_weights self.state.memory_efficient_backward = memory_efficient_backward if threshold > 0.0 and not has_fp16_weights: self.state.use_pool = True self.weight = Int8Params( weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights, ) self.weight.cuda(weight.device) self.bias = bias def init_8bit_state(self): self.state.CB = self.weight.CB self.state.SCB = self.weight.SCB self.weight.CB = None self.weight.SCB = None def forward(self, x: torch.Tensor): self.state.is_training = self.training if self.weight.CB is not None: self.init_8bit_state() # weights are cast automatically as Int8Params, but the bias has to be cast manually if self.bias is not None and self.bias.dtype != x.dtype: self.bias.data = self.bias.data.to(x.dtype) out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state) if not self.state.has_fp16_weights: if self.state.CB is not None and self.state.CxB is not None: # we converted 8-bit row major to turing/ampere format in the first inference pass # we no longer need the row-major weight del self.state.CB self.weight.data = self.state.CxB return out class Linear4bit(nn.Module): def __init__(self, weight, bias, quant_type): super().__init__() self.weight = Params4bit( weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type, ) self.compute_dtype = None self.weight.cuda(weight.device) self.bias = bias def forward(self, x: torch.Tensor): # weights are cast automatically as Int8Params, but the bias has to be cast manually if self.bias is not None and self.bias.dtype != x.dtype: self.bias.data = self.bias.data.to(x.dtype) if getattr(self.weight, "quant_state", None) is None: print( "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first." ) inp_dtype = x.dtype if self.compute_dtype is not None: x = x.to(self.compute_dtype) bias = None if self.bias is None else self.bias.to(self.compute_dtype) out = bnb.matmul_4bit( x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state ) out = out.to(inp_dtype) return out @lru_cache(1) def warn_deprecate_bnb(): logger.warning( "Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce" ) def get_linear(weight, bias, quantize): if quantize is None: linear = FastLinear(weight, bias) elif quantize == "eetq": if HAS_EETQ: linear = EETQLinear(weight, bias) else: raise ImportError( "Please install EETQ from https://github.com/NetEase-FuXi/EETQ" ) elif quantize == "bitsandbytes": warn_deprecate_bnb() linear = Linear8bitLt( weight, bias, has_fp16_weights=False, threshold=6.0, ) if bias is not None: linear.bias = nn.Parameter(bias) elif quantize == "bitsandbytes-fp4": linear = Linear4bit( weight, bias, quant_type="fp4", ) elif quantize == "bitsandbytes-nf4": linear = Linear4bit( weight, bias, quant_type="nf4", ) elif quantize == "gptq": try: qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight except Exception: raise NotImplementedError( f"The passed weight is not `gptq` compatible, loader needs to be updated." ) if use_exllama: linear = ExllamaQuantLinear( qweight, qzeros, scales, g_idx, bias, bits, groupsize ) else: linear = QuantLinear( qweight, qzeros, scales, g_idx, bias, bits, groupsize, ) elif quantize == "awq": try: qweight, qzeros, scales, _, bits, groupsize, _ = weight except Exception: raise NotImplementedError( f"The passed weight is not `awq` compatible, loader needs to be updated." ) if IS_ROCM_SYSTEM: raise NotImplementedError( "AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead " "to use Exllama/GPTQ kernels for AWQ inference." ) if not HAS_AWQ: raise NotImplementedError("You do not seem to have awq installed, either install it (cd server && make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly") linear = WQLinear( w_bit=bits, group_size=groupsize, qweight=qweight, qzeros=qzeros, scales=scales, bias=bias is not None, ) else: raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.") return linear class SuperLayer(nn.Module): def __init__(self, linear): super().__init__() self.linear = linear def forward(self, x): return self.linear.forward(x) class TensorParallelHead(SuperLayer): def __init__(self, linear, process_group, should_gather: bool): super().__init__(linear) self.process_group = process_group self.should_gather = should_gather @staticmethod def load(config, prefix: str, weights): if weights.process_group.size() > 1: try: weight = weights.get_sharded(f"{prefix}.weight", dim=0) should_gather = True except AssertionError: # If the vocab size is not divisible by number of shards # just load the entire thing. weight = weights.get_tensor(f"{prefix}.weight") should_gather = False else: weight = weights.get_tensor(f"{prefix}.weight") should_gather = False # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings) if config.quantize in ["gptq", "awq", "eetq"]: quantize = None else: quantize = config.quantize return TensorParallelHead( get_linear(weight, bias=None, quantize=quantize), process_group=weights.process_group, should_gather=should_gather, ) def forward(self, input: torch.Tensor) -> torch.Tensor: if not self.should_gather: return super().forward(input) world_size = self.process_group.size() if len(input.shape) == 2 and isinstance(self.linear, FastLinear): out_dim = self.linear.weight.shape[0] if input.shape[0] == 1: world_out = input.new_empty(1, out_dim * world_size) local_out = input.new_empty(1, out_dim) gather_input = local_out else: world_out = input.new_empty(out_dim * world_size, input.shape[0]) gather_input = input.new_empty(out_dim, input.shape[0]) local_out = gather_input.T torch.mm(input, self.linear.weight.T, out=local_out) torch.distributed.all_gather_into_tensor( world_out, gather_input, group=self.process_group ) if input.shape[0] == 1: return world_out return world_out.T output = super().forward(input) world_output = [ torch.empty_like(output) for _ in range(self.process_group.size()) ] torch.distributed.all_gather(world_output, output, group=self.process_group) world_output = torch.cat(world_output, dim=-1) return world_output class TensorParallelColumnLinear(SuperLayer): @classmethod def load_qkv(cls, config, prefix: str, weights, bias: bool): """Specific method when the QKV was joined after the fact""" weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize) if bias: raise NotImplementedError("packed_qkv only implemented for baichuan") else: bias = None linear = get_linear(weight, bias, config.quantize) return cls(linear) @classmethod def load(cls, config, prefix: str, weights, bias: bool): return cls.load_multi(config, [prefix], weights, bias, dim=0) @classmethod def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int): weight = weights.get_multi_weights_col( prefixes, quantize=config.quantize, dim=dim ) if bias: b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes] bias = torch.cat(b, dim=dim) else: bias = None linear = get_linear(weight, bias, config.quantize) return cls(linear) class TensorParallelRowLinear(SuperLayer): def __init__(self, linear, process_group): super().__init__(linear) self.process_group = process_group @classmethod def load(cls, config, prefix: str, weights, bias: bool): weight = weights.get_multi_weights_row(prefix, quantize=config.quantize) if bias and weights.process_group.rank() == 0: # Rank is only on the first rank process bias = weights.get_tensor(f"{prefix}.bias") else: bias = None return cls( get_linear(weight, bias, config.quantize), process_group=weights.process_group, ) def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor: out = super().forward(input) if self.process_group.size() > 1 and reduce: torch.distributed.all_reduce(out, group=self.process_group) return out class TensorParallelEmbedding(nn.Module): def __init__(self, prefix: str, weights, reduce=True): super().__init__() weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0) num_embeddings = weights.get_shape(f"{prefix}.weight")[0] process_group = weights.process_group world_size = process_group.size() rank = process_group.rank() block_size = (num_embeddings + world_size - 1) // world_size self.min_id = rank * block_size self.max_id = min(num_embeddings, (rank + 1) * block_size) self.null_idx = weight.shape[ 0 ] # Usually block_size, might be less in non even vocab_size. self.process_group = weights.process_group self.reduce = reduce """Additional 0 entry used for masking""" self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1))) def forward(self, input: torch.Tensor) -> torch.Tensor: # default all out of bounds values to `self.null_idx` that will then be mapped to 0 # translate for [0, self.max_id - self.min_id[ input = torch.where( (self.min_id > input) | (input >= self.max_id), self.null_idx, input - self.min_id, ) out = torch.nn.functional.embedding(input, self.weight) if self.reduce and self.process_group.size() > 1: torch.distributed.all_reduce(out, group=self.process_group) return out try: if IS_CUDA_SYSTEM: import dropout_layer_norm elif IS_ROCM_SYSTEM: from vllm import layernorm_ops else: dropout_layer_norm = None class FastLayerNorm(nn.LayerNorm): def forward(self, hidden_states, residual=None): if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM: if residual is not None: hidden_states += residual residual = hidden_states return super(FastLayerNorm, self).forward(hidden_states), residual else: ( normed_hidden_states, residual, *rest, ) = dropout_layer_norm.dropout_add_ln_fwd( hidden_states, residual, self.weight, self.bias, None, None, None, None, 0.0, self.eps, 1.0, 0, None, False, False, ) if residual is None: residual = hidden_states return normed_hidden_states, residual class FastRMSNorm(nn.Module): def __init__(self, weight: torch.Tensor, eps: float): super().__init__() self.weight = nn.Parameter(weight) self.variance_epsilon = eps @classmethod def load(cls, prefix, weights, eps=1e-6): weight = weights.get_tensor(f"{prefix}.weight") return cls(weight, eps) def forward(self, hidden_states, residual=None): if hidden_states.shape[-1] > 8192: if residual is not None: hidden_states += residual residual = hidden_states hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt( variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states, residual elif IS_CUDA_SYSTEM: # faster post attention rms norm ( normed_hidden_states, res, *rest, ) = dropout_layer_norm.dropout_add_ln_fwd( hidden_states, residual, self.weight, None, None, None, None, None, 0.0, self.variance_epsilon, 1.0, 0, None, False, True, # Activate RMSNorm ) if res is None: res = hidden_states return normed_hidden_states, res elif IS_ROCM_SYSTEM: # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not. if residual is not None: hidden_states += residual residual = hidden_states out = torch.empty_like(hidden_states) layernorm_ops.rms_norm( out, hidden_states, self.weight.data, self.variance_epsilon, ) return out, residual else: raise ValueError( "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction." ) except ImportError: pass try: if IS_CUDA_SYSTEM: from flash_attn.layers.rotary import RotaryEmbedding import rotary_emb elif IS_ROCM_SYSTEM: from vllm import pos_encoding_ops def _create_inv_freq(dim, base, device): inv_freq = 1.0 / ( base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim) ) return inv_freq def _get_rope_config(config): if os.getenv("ROPE_SCALING", None) is not None: rope_scaling = { "type": os.environ["ROPE_SCALING"], "factor": float(os.environ["ROPE_FACTOR"]), } return rope_scaling return getattr(config, "rope_scaling", None) class PositionRotaryEmbedding(nn.Module): def __init__(self, inv_freq, scaling_factor): super().__init__() self.inv_freq = inv_freq self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None self.scaling_factor = scaling_factor self.dynamic_args = None def forward( self, query: torch.Tensor, key: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, ): # Such controlflows may add some overhead. if IS_CUDA_SYSTEM: rotary_dim = cos.shape[-1] q1 = query[..., :rotary_dim] q2 = query[..., rotary_dim : 2 * rotary_dim] rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False) k1 = key[..., :rotary_dim] k2 = key[..., rotary_dim : 2 * rotary_dim] rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False) elif IS_ROCM_SYSTEM: # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems. # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773 head_size = query.shape[-1] # Inplace operation, updating query and key. pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, True) else: raise ValueError( "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction." ) @classmethod def static(cls, config, dim, base, device): inv_freq = _create_inv_freq(dim, base, device) scaling_factor = None rope_scaling = _get_rope_config(config) if rope_scaling is not None: scaling_factor = rope_scaling["factor"] if rope_scaling["type"] == "linear": pass elif rope_scaling["type"] == "dynamic": return DynamicPositionRotaryEmbedding( dim=dim, max_position_embeddings=config.max_position_embeddings, base=base, device=inv_freq.device, scaling_factor=scaling_factor, ) elif rope_scaling["type"] == "yarn": return YarnPositionRotaryEmbedding( dim=2 * inv_freq.shape[0], max_position_embeddings=rope_scaling[ "original_max_position_embeddings" ], base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor, extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, ) else: raise NotImplementedError( f"rope scaling type {rope_scaling['type']} is not implemented or invalid" ) return cls(inv_freq, scaling_factor) @classmethod def load(cls, config, prefix, weights): # XXX: Always load this in float32 ! dtype = weights.dtype weights.dtype = torch.float32 inv_freq = weights.get_tensor(f"{prefix}.inv_freq") weights.dtype = dtype scaling_factor = None rope_scaling = _get_rope_config(config) if rope_scaling is not None: scaling_factor = rope_scaling["factor"] if rope_scaling["type"] == "linear": pass elif rope_scaling["type"] == "dynamic": return DynamicPositionRotaryEmbedding( dim=2 * inv_freq.shape[0], max_position_embeddings=config.max_position_embeddings, base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor, ) elif rope_scaling["type"] == "yarn": return YarnPositionRotaryEmbedding( dim=2 * inv_freq.shape[0], max_position_embeddings=rope_scaling[ "original_max_position_embeddings" ], base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor, extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, ) else: raise NotImplementedError( f"rope scaling type {rope_scaling['type']} is not implemented or invalid" ) return cls(inv_freq, scaling_factor) def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) if self.scaling_factor is not None: t /= self.scaling_factor # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) def get_cos_sin( self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype ): """ Return cos and sin for the asked position ids """ if IS_ROCM_SYSTEM: # For RoCm, we always use float cos/sin to avoid a cast. # For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26 # But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal. dtype = torch.float32 self._update_cos_sin_cache(dtype, position_ids.device, max_s) cos = torch.index_select(self._cos_cached, 0, position_ids) sin = torch.index_select(self._sin_cached, 0, position_ids) # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow. return cos.unsqueeze(1), sin.unsqueeze(1) class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding): def __init__(self, dim, max_position_embeddings, base, device, scaling_factor): inv_freq = _create_inv_freq(dim, base, device) super().__init__(inv_freq, scaling_factor) self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): if seqlen > self.max_position_embeddings: newbase = self.base * ( (self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) self.inv_freq = _create_inv_freq( self.dim, newbase, self.inv_freq.device ) self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) # Inverse dim formula to find dim based on number of rotations import math def find_correction_dim( num_rotations, dim, base=10000, max_position_embeddings=2048 ): return ( dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi)) ) / (2 * math.log(base)) # Find dim range bounds based on rotations def find_correction_range( low_rot, high_rot, dim, base=10000, max_position_embeddings=2048 ): low = math.floor( find_correction_dim(low_rot, dim, base, max_position_embeddings) ) high = math.ceil( find_correction_dim(high_rot, dim, base, max_position_embeddings) ) return max(low, 0), min(high, dim - 1) # Clamp values just in case def linear_ramp_mask(min, max, dim): if min == max: max += 0.001 # Prevent singularity linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) ramp_func = torch.clamp(linear_func, 0, 1) return ramp_func def get_mscale(scale=1): if scale <= 1: return 1.0 return 0.1 * math.log(scale) + 1.0 class YarnPositionRotaryEmbedding(PositionRotaryEmbedding): def __init__( self, dim, max_position_embeddings, base, device, scaling_factor, *, extrapolation_factor, attn_factor, beta_fast, beta_slow, ): inv_freq = _create_inv_freq(dim, base, device) super().__init__(inv_freq, scaling_factor) self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base self.extrapolation_factor = extrapolation_factor self.attn_factor = attn_factor self.beta_fast = beta_fast self.beta_slow = beta_slow self.mscale = float( get_mscale(self.scaling_factor) * self.attn_factor ) # Get n-d magnitude scaling corrected for interpolation def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): if seqlen > self.max_position_embeddings: inv_freq_extrapolation = _create_inv_freq( self.dim, self.base, self.inv_freq.device ) freqs = 1.0 / inv_freq_extrapolation inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs) low, high = find_correction_range( self.beta_fast, self.beta_slow, self.dim, self.base, self.max_position_embeddings, ) inv_freq_mask = ( 1 - linear_ramp_mask(low, high, self.dim // 2).float().to(device) ) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation inv_freq = ( inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask ) self.inv_freq = inv_freq self.mscale = float( get_mscale(self.scaling_factor) * self.attn_factor ) # Get n-d magnitude scaling corrected for interpolation self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype) self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype) except ImportError: pass